Parameter identification of BLDC motor model via metaheuristic optimization techniques

被引:4
|
作者
Kumpanya, Danupon [1 ]
Thaiparnat, Sattarpoom [2 ]
Puangdownreong, Deacha [3 ]
机构
[1] Ragamangala Univ Technol Suvarnabhumi RUS, Fac Engn & Architecture, Suphanburi, Thailand
[2] RUS, Fac Business Adm & Informat Technol, Suphanburi, Thailand
[3] South East Asia Univ, Grad Sch, Dept Elect Engn, Bangkok, Thailand
来源
INDUSTRIAL ENGINEERING AND SERVICE SCIENCE 2015, IESS 2015 | 2015年 / 4卷
关键词
Parameter identification; bldc motor model; adaptive tabu search; intensified current search;
D O I
10.1016/j.promfg.2015.11.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The brushless dc (BLDC) motor has been increasingly used in industrial automation, automotive, aerospace, instrumentation and appliances. Analysis and design of the BLDC motor efficiently require its accurate model and parameters. In this paper, the parameter identification of the BLDC motor model via well-known metaheuristic optimization search techniques is proposed. Two trajectory-based methods, i.e. adaptive tabu search (ATS) and intensified current search (ICS) are employed to estimate the BLDC motor parameters. As simulation results of model identification and validation, both ATS and ICS can provide optimal BLDC model parameters. The BLDC models obtained show a very good agreement to actual system dynamics. However, the ICS can pro-vide optimal model parameters faster than the ATS. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [21] BLDC-Motor Production Process Surveillance based on Parameter Identification Method Avoiding the classical load machine and exploiting inherent inertia
    Hillenbrand, Franz
    Riedel, Martin
    PROCEEDINGS OF 2016 6TH INTERNATIONAL ELECTRIC DRIVES PRODUCTION CONFERENCE (EDPC), 2016, : 86 - 91
  • [22] Induction Motor Parameter Identification Based on T-model Equivalent Circuit
    Fan, Ming
    Chai, Jianyun
    Sun, Xudong
    2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 2535 - 2539
  • [23] Parameter Identification of IPM Motor Reduced Order Thermal Model for Traction Applications
    El Murr, Georges Mekhael
    Babaa, Saleh Elkelani
    Ordys, Andrew
    2019 1ST INTERNATIONAL CONFERENCE ON UNMANNED VEHICLE SYSTEMS-OMAN (UVS), 2019,
  • [24] Parameter identification and shape optimization
    Valente, Robertt A. F.
    Andrade-Campos, Antonio
    Carvalho, Jose F.
    Cruz, Paulo S.
    OPTIMIZATION AND ENGINEERING, 2011, 12 (1-2) : 129 - 152
  • [25] Stribeck friction model parameter identification for a permanent-magnet spherical motor
    Li G.-L.
    Li H.-L.
    Wang Q.-J.
    Ju B.
    Wen Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2022, 26 (04): : 121 - 130
  • [26] Parameter Identification of MR Damper Model Based on Particle Swarm Optimization
    Yang, Yonggang
    Ding, Youchuang
    Zhu, Shixing
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 555 - 563
  • [27] Parameter identification of dynamic load model based on chaotic optimization strategy
    Wang, Shuangxin
    Jiang, Yan
    Zhu, Hengjun
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 7552 - 7556
  • [28] Parameter identification of superplastic constitutive model based on global optimization method
    Qu, Jie
    Jin, Quanlin
    Xu, Bingye
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009, 45 (06): : 80 - 87
  • [29] Application of a chaotic optimization strategy to parameter identification of static load model
    Wang, SX
    Han, F
    Zhu, HJ
    SYSTEM SIMULATION AND SCIENTIFIC COMPUTING, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1560 - 1564
  • [30] Parameter identification of magnetorheological damper model with modified seagull optimization algorithm
    Shi W.-K.
    Zhang S.-G.
    Zhang Y.-K.
    Chen Z.-Y.
    Jiang Y.-F.
    Lin B.-B.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (04): : 764 - 772