Forecasting Portugal global load with artificial neural networks

被引:0
|
作者
Fidalgo, J. Nuno [1 ]
Matos, Manuel A.
机构
[1] Univ Porto, INESC Porto, Power Syst Unit, Oporto, Portugal
来源
ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 2, PROCEEDINGS | 2007年 / 4669卷
关键词
artificial neural networks; load forecasting;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a research where the main goal was to predict the future values of a time series of the hourly demand of Portugal global electricity consumption in the following day. In a preliminary phase several regression techniques were experimented: K Nearest Neighbors, Multiple Linear Regression, Projection Pursuit Regression, Regression Trees, Multivariate Adaptive Regression Splines and Artificial Neural Networks (ANN). Having the best results been achieved with ANN, this technique was selected as the primary tool for the load forecasting process. The prediction for holidays and days following holidays is analyzed and dealt with. Temperature significance on consumption level is also studied. Results attained support the adopted approach.
引用
收藏
页码:728 / +
页数:3
相关论文
共 50 条
  • [31] Parallel processing for power system generation scheduling with Artificial Neural Networks for load forecasting
    Tang, JX
    PDPTA '05: Proceedings of the 2005 International Conference on Parallel and Distributed Processing Techniques and Applications, Vols 1-3, 2005, : 678 - 684
  • [32] Implementation of advanced functionalities for Distribution Management Systems: Load forecasting and modeling through Artificial Neural Networks ensembles
    Saviozzi, M.
    Massucco, S.
    Silvestro, F.
    ELECTRIC POWER SYSTEMS RESEARCH, 2019, 167 : 230 - 239
  • [33] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [34] Deep Neural Networks for Energy Load Forecasting
    Amarasinghe, Kasun
    Marino, Daniel L.
    Manic, Milos
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1483 - 1488
  • [35] Load Forecasting using Deep Neural Networks
    Hosein, Stefan
    Hosein, Patrick
    2017 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2017,
  • [36] Load Forecasting via Deep Neural Networks
    He, Wan
    5TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2017, 2017, 122 : 308 - 314
  • [37] Load forecasting using artificial neural networksand support vector regression
    De Rocco, Silvio Michel
    Aoki, Alexandre Rasi
    Lamar, Marcus Vinicius
    PROCEEDINGS OF THE 7TH WSES INTERNATIONAL CONFERENCE ON POWER SYSTEMS: NEW ADVANCES IN POWER SYSTEMS, 2007, : 36 - +
  • [38] Application of artificial neural networks in sales forecasting
    Yip, DHF
    Hines, EL
    Yu, WWH
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 2121 - 2124
  • [39] An application of artificial neural networks for rainfall forecasting
    Luk, KC
    Ball, JE
    Sharma, A
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (6-7) : 683 - 693
  • [40] Application of Artificial Neural Networks for Temperature Forecasting
    Hayati, Mohsen
    Mohebi, Zahra
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 : 275 - 279