Forecasting Portugal global load with artificial neural networks

被引:0
|
作者
Fidalgo, J. Nuno [1 ]
Matos, Manuel A.
机构
[1] Univ Porto, INESC Porto, Power Syst Unit, Oporto, Portugal
关键词
artificial neural networks; load forecasting;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a research where the main goal was to predict the future values of a time series of the hourly demand of Portugal global electricity consumption in the following day. In a preliminary phase several regression techniques were experimented: K Nearest Neighbors, Multiple Linear Regression, Projection Pursuit Regression, Regression Trees, Multivariate Adaptive Regression Splines and Artificial Neural Networks (ANN). Having the best results been achieved with ANN, this technique was selected as the primary tool for the load forecasting process. The prediction for holidays and days following holidays is analyzed and dealt with. Temperature significance on consumption level is also studied. Results attained support the adopted approach.
引用
收藏
页码:728 / +
页数:3
相关论文
共 50 条
  • [21] Integrated evolving fuzzy neural networks and artificial intelligence for load forecasting
    Liao, GC
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2004, 12 (02): : 73 - 80
  • [22] Forecasting of hourly electric load in Colombia using artificial neural networks
    Medina Hurtado, Santiago
    Moreno Cadavid, Julian
    Galego Valencia, Juan Pablo
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2011, (59): : 98 - 107
  • [23] DESIGN OF ARTIFICIAL NEURAL NETWORKS FOR SHORT-TERM LOAD FORECASTING .2. MULTILAYER FEEDFORWARD NETWORKS FOR PEAK LOAD AND VALLEY LOAD FORECASTING
    HSU, YY
    YANG, CC
    IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION, 1991, 138 (05) : 414 - 418
  • [24] Short Term Electrical Load Forecasting for Mauritius using Artificial Neural Networks
    Bugwan, Tina
    King, Robert T. F. Ah
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 3667 - 3672
  • [25] An efficient approach for short term load forecasting using artificial neural networks
    Kandil, Nahi
    Wamkeue, Rene
    Saad, Maarouf
    Georges, Semaan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (08) : 525 - 530
  • [26] Forecasting Turkey's Short Term Hourly Load with Artificial Neural Networks
    Bilgic, M.
    Girep, C. P.
    Aslanoglu, S. Y.
    Aydinalp-Koksal, M.
    2010 IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION: SMART SOLUTIONS FOR A CHANGING WORLD, 2010,
  • [27] Forecasting daily urban electric load profiles using artificial neural networks
    Beccali, M
    Cellura, M
    Lo Brano, V
    Marvuglia, A
    ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (18-19) : 2879 - 2900
  • [28] Short term load forecasting using artificial neural networks for the west of Iran
    Department of Electrical Engineering, Faculty of Engineering, Razi University, Tagh-e-Bostan, Kermanshah-67149, Iran
    J. Appl. Sci., 2007, 12 (1582-1588):
  • [29] Load Forecasting Modelling of Data Centers and IT Systems by Using Artificial Neural Networks
    Karabinaoglu, Murat Salim
    Gozel, Tuba
    2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 62 - 66
  • [30] Enhanced Short-Term Load Forecasting Using Artificial Neural Networks
    Arvanitidis, Athanasios Ioannis
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Laitsos, Vasileios M.
    Tsoukalas, Lefteri H.
    ENERGIES, 2021, 14 (22)