A multimodal deep learning model for cardiac resynchronisation therapy response prediction

被引:17
作者
Puyol-Anton, Esther [1 ]
Sidhu, Baldeep S. [1 ,2 ]
Gould, Justin [1 ,2 ]
Porter, Bradley [1 ,2 ]
Elliott, Mark K. [1 ,2 ]
Mehta, Vishal [1 ,2 ]
Rinaldi, Christopher A. [1 ,2 ]
King, Andrew P. [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Guys & St ThomasHospital, London, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Multi-modality imaging; Cardiac resynchronisation therapy; Treatment response prediction; Multi -view deep learning; RESYNCHRONIZATION THERAPY; ESC GUIDELINES; HEART-FAILURE; MOTION ATLAS; ECHOCARDIOGRAPHY; BIOMARKERS; CONSENSUS;
D O I
10.1016/j.media.2022.102465
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A B S T R A C T We present a novel multimodal deep learning framework for cardiac resynchronisation therapy (CRT) re-sponse prediction from 2D echocardiography and cardiac magnetic resonance (CMR) data. The proposed method first uses the 'nnU-Net' segmentation model to extract segmentations of the heart over the full cardiac cycle from the two modalities. Next, a multimodal deep learning classifier is used for CRT re-sponse prediction, which combines the latent spaces of the segmentation models of the two modalities. At test time, this framework can be used with 2D echocardiography data only, whilst taking advantage of the implicit relationship between CMR and echocardiography features learnt from the model. We evaluate our pipeline on a cohort of 50 CRT patients for whom paired echocardiography/CMR data were available, and results show that the proposed multimodal classifier results in a statistically significant improvement in accuracy compared to the baseline approach that uses only 2D echocardiography data. The combina-tion of multimodal data enables CRT response to be predicted with 77.38% accuracy (83.33% sensitivity and 71.43% specificity), which is comparable with the current state-of-the-art in machine learning-based CRT response prediction. Our work represents the first multimodal deep learning approach for CRT re-sponse prediction. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:10
相关论文
共 58 条
  • [1] Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients
    Ahmad, Tariq
    Lund, Lars H.
    Rao, Pooja
    Ghosh, Rohit
    Warier, Prashant
    Vaccaro, Benjamin
    Dahlstrom, Ulf
    O'Connor, Christopher M.
    Felker, G. Michael
    Desai, Nihar R.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08):
  • [2] Andrew G., 2013, P 30 INT C MACHINE L, P1247
  • [3] [Anonymous], 2013, Short Papers
  • [4] Impact of Cardiac Resynchronization Therapy on Left Ventricular Mechanics: Understanding the Response through a New Quantitative Approach Based on Longitudinal Strain Integrals
    Bernard, Anne
    Donal, Erwan
    Leclercq, Christophe
    Schnell, Frederic
    Fournet, Maxime
    Reynaud, Amelie
    Thebault, Christophe
    Mabo, Philippe
    Daubert, J. -Claude
    Hernandez, Alfredo
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2015, 28 (06) : 700 - 708
  • [5] Brefeld U., 2004, ACM INT C PROCEEDING, V69, DOI [10.1145/1015330.1015350, DOI 10.1145/1015330.1015350]
  • [6] 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA)
    Brignole, Michele
    Auricchio, Angelo
    Baron-Esquivias, Gonzalo
    Bordachar, Pierre
    Boriani, Giuseppe
    Breithardt, Ole-A
    Cleland, John
    Deharo, Jean-Claude
    Delgado, Victoria
    Elliott, Perry M.
    Gorenek, Bulent
    Israel, Carsten W.
    Leclercq, Christophe
    Linde, Cecilia
    Mont, Lluis
    Padeletti, Luigi
    Sutton, Richard
    Vardas, Panos E.
    Luis Zamorano, Jose
    Achenbach, Stephan
    Baumgartner, Helmut
    Bax, Jeroen J.
    Bueno, Hector
    Dean, Veronica
    Deaton, Christi
    Erol, Cetin
    Fagard, Robert
    Ferrari, Roberto
    Hasdai, David
    Hoes, Arno W.
    Kirchhof, Paulus
    Knuuti, Juhani
    Kolh, Philippe
    Lancellotti, Patrizio
    Linhart, Ales
    Nihoyannopoulos, Petros
    Piepoli, Massimo F.
    Ponikowski, Piotr
    Sirnes, Per Anton
    Luis Tamargo, Juan
    Tendera, Michal
    Torbicki, Adam
    Wijns, William
    Windecker, Stephan
    Kirchhof, Paulus
    Blomstrom-Lundqvist, Carina
    Badano, Luigi P.
    Aliyev, Farid
    Baensch, Dietmar
    Baumgartner, Helmut
    [J]. EUROPEAN HEART JOURNAL, 2013, 34 (29) : 2281 - 2329
  • [7] Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure
    Bristow, MR
    Saxon, LA
    Boehmer, J
    Krueger, S
    Kass, DA
    De Marco, T
    Carson, P
    DiCarlo, L
    DeMets, D
    White, BG
    DeVries, DW
    Feldman, AM
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (21) : 2140 - 2150
  • [8] Bruge S., 2018, MULTIMODALITY IMAGIN, P67
  • [9] Consensus and complementarity based maximum entropy discrimination for multi-view classification
    Chao, Guoqing
    Sun, Shiliang
    [J]. INFORMATION SCIENCES, 2016, 367 : 296 - 310
  • [10] An intelligent classifier for prognosis of cardiac resynchronization therapy based on speckle-tracking echocardiograms
    Chao, Pei-Kuang
    Wang, Chun-Li
    Chan, Hsiao-Lung
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2012, 54 (03) : 181 - 188