Integrating Multi-Omics Data to Identify Novel Disease Genes and Single-Neucleotide Polymorphisms

被引:6
作者
Zhao, Sheng [1 ]
Jiang, Huijie [1 ]
Liang, Zong-Hui [2 ]
Ju, Hong [3 ]
机构
[1] Harbin Med Univ, Dept Radiol, Affiliated Hosp 2, Harbin, Peoples R China
[2] Fudan Univ, Dept Radiol, Jianan Dist Ctr Hosp, Shanghai, Peoples R China
[3] Heilongjiang Biol Sci & Technol Career Acad, Dept Informat Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
stroke; genome-wide association study; expression quantitative trait loci; mQTL; SMR; single-nucleotide polymorphisms; STROKE; RISK; GWAS; EQTL; SCHIZOPHRENIA; METHYLATION; BRAIN;
D O I
10.3389/fgene.2019.01336
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Stroke ranks the second leading cause of death among people over the age of 60 in the world. Stroke is widely regarded as a complex disease that is affected by genetic and environmental factors. Evidence from twin and family studies suggests that genetic factors may play an important role in its pathogenesis. Therefore, research on the genetic association of susceptibility genes can help understand the mechanism of stroke. Genome-wide association study (GWAS) has found a large number of stroke-related loci, but their mechanism is unknown. In order to explore the function of single-nucleotide polymorphisms (SNPs) at the molecular level, in this paper, we integrated 8 GWAS datasets with brain expression quantitative trait loci (eQTL) dataset to identify SNPs and genes which are related to four types of stroke (ischemic stroke, large artery stroke, cardioembolic stroke, small vessel stroke). Thirty-eight SNPs which can affect 14 genes expression are found to be associated with stroke. Among these 14 genes, 10 genes expression are associated with ischemic stroke, one gene for large artery stroke, six genes for cardioembolic stroke and eight genes for small vessel stroke. To explore the effects of environmental factors on stroke, we identified methylation susceptibility loci associated with stroke using methylation quantitative trait loci (MQTL). Thirty-one of these 38 SNPs are at greater risk of methylation and can significantly change gene expression level. Overall, the genetic pathogenesis of stroke is explored from locus to gene, gene to gene expression and gene expression to phenotype.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[2]  
[Anonymous], STUDIES NATURAL PROD
[3]   Periodontal profile class is associated with prevalent diabetes, coronary heart disease, stroke, and systemic markers of C-reactive protein and interleukin-6 [J].
Beck, James D. ;
Moss, Kevin L. ;
Morelli, Thiago ;
Offenbacher, Steven .
JOURNAL OF PERIODONTOLOGY, 2018, 89 (02) :157-165
[4]   Low Levels of Caveolin-1 Predict Symptomatic Bleeding After Thrombolytic Therapy in Patients With Acute Ischemic Stroke [J].
Castellanos, Mar ;
van Eendenburg, Cecile ;
Gubern, Carme ;
Kadar, Elisabet ;
Huguet, Gemma ;
Puig, Josep ;
Sobrino, Tomas ;
Blasco, Gerard ;
Serena, Joaquin ;
Manuel Sanchez, Juan .
STROKE, 2018, 49 (06) :1525-1527
[5]   Genetic variants on chromosome 9p21 confer risks of cerebral infarction in the Chinese population: a meta-analysis [J].
Chen, Ji-Xiang ;
Liu, Jing ;
Hu, Feng ;
Bi, Yin ;
Li, Man ;
Zhao, Lei .
INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2019, 33
[6]   gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions [J].
Cheng, Liang ;
Qi, Changlu ;
Zhuang, He ;
Fu, Tongze ;
Zhang, Xue .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D554-D560
[7]   Exposing the Causal Effect of Body Mass Index on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study [J].
Cheng, Liang ;
Zhuang, He ;
Ju, Hong ;
Yang, Shuo ;
Han, Junwei ;
Tan, Renjie ;
Hu, Yang .
FRONTIERS IN GENETICS, 2019, 10
[8]   Exposing the Causal Effect of C-Reactive Protein on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study [J].
Cheng, Liang ;
Zhuang, He ;
Yang, Shuo ;
Jiang, Huijie ;
Wang, Song ;
Zhang, Jun .
FRONTIERS IN GENETICS, 2018, 9
[9]   LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse [J].
Cheng, Liang ;
Wang, Pingping ;
Tian, Rui ;
Wang, Song ;
Guo, Qinghua ;
Luo, Meng ;
Zhou, Wenyang ;
Liu, Guiyou ;
Jiang, Huijie ;
Jiang, Qinghua .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D140-D144
[10]   DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function [J].
Cheng, Liang ;
Hu, Yang ;
Sun, Jie ;
Zhou, Meng ;
Jiang, Qinghua .
BIOINFORMATICS, 2018, 34 (11) :1953-1956