Numerical simulation of rolling pad instability in cuboid liquid metal batteries

被引:11
作者
Xiang, Linyan [1 ]
Zikanov, Oleg [1 ]
机构
[1] Univ Michigan Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128 USA
关键词
DENSITY CONSERVATIVE SCHEME; INCOMPRESSIBLE MHD FLOWS; MAGNETIC REYNOLDS-NUMBER; INTERFACE INSTABILITY; MELT FLOWS; WAVES; STABILITY; SURFACE;
D O I
10.1063/1.5123170
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The rolling pad instability is caused by electromagnetic interactions in systems of horizontal layers with strongly different electric conductivities. We analyze the instability for a simplified model of a liquid metal battery, a promising device for large-scale stationary energy storage. Numerical simulations of the flow and the dynamics of electromagnetically coupled interfacial waves are performed using OpenFOAM. This work confirms the earlier conclusions that the instability is a significant factor affecting the battery's operation. The critical role played by the ratio between the density differences across the two interfaces is elucidated. It is found that the ratio determines the stability characteristics and the type (symmetrically or antisymmetrically coupled) of dominant interfacial waves.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Numerical simulation of a liquid bridge in a coaxial gas flow [J].
Herrada, Miguel A. ;
Lopez-Herrera, Jose M. ;
Vega, Emilio J. ;
Montanero, Jose M. .
PHYSICS OF FLUIDS, 2011, 23 (01)
[32]   Investigation of rolling wheel-rail contact using an elaborate numerical simulation [J].
Xue, Fuchun .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2020, 234 (10) :1198-1209
[33]   Instability of Ionic Liquid-Based Electrolytes in Li-O2 Batteries [J].
Das, Supti ;
Hojberg, Jonathan ;
Knudsen, Kristian Basthohn ;
Younesi, Reza ;
Johansson, Patrik ;
Norby, Poul ;
Vegge, Tejs .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (32) :18084-18090
[34]   The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability [J].
Stefani, F. ;
Gailitis, A. ;
Gerbeth, G. ;
Giesecke, A. ;
Gundrum, Th. ;
Ruediger, G. ;
Seilmayer, M. ;
Vogt, T. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2019, 113 (1-2) :51-70
[35]   Origin of the lithium metal anode instability in solid-state batteries during discharge [J].
Singh, Dheeraj Kumar ;
Fuchs, Till ;
Krempaszky, Christian ;
Schweitzer, Pascal ;
Lerch, Christian ;
Richter, Felix H. ;
Janek, Juergen .
MATTER, 2023, 6 (05) :1463-1483
[36]   The nature of interfacial instabilities in liquid metal batteries in a vertical magnetic field [J].
Molokov, S. .
EPL, 2018, 121 (04)
[37]   Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries [J].
Zhang, Haiqin ;
Qu, Wenjie ;
Chen, Nan ;
Huang, Yongxin ;
Li, Li ;
Wu, Feng ;
Chen, Renjie .
ELECTROCHIMICA ACTA, 2018, 285 :78-85
[38]   Universal Renaissance Strategy of Metal Fluoride in Secondary Ion Batteries Enabled by Liquid Metal Gallium [J].
Yang, Jinghao ;
Zhou, Wei ;
Hu, Jiaming ;
Jiang, Ruohan ;
Sun, Guangai ;
Zhao, Jie ;
Wang, Fei ;
Fang, Fang ;
Song, Yun ;
Sun, Dalin .
ADVANCED MATERIALS, 2023, 35 (28)
[39]   Numerical investigation of electrohydrodynamic instability and bifurcation in a dielectric liquid subjected to unipolar injection [J].
Wang, Bo-Fu ;
Sheu, Tony Wen-Hann .
COMPUTERS & FLUIDS, 2016, 136 :1-10
[40]   Direct Numerical Simulation of the Richtmyer-Meshkov Instability in Reactive and Nonreactive Flows [J].
Bambauer, Maximilian ;
Hasslberger, Josef ;
Klein, Markus .
COMBUSTION SCIENCE AND TECHNOLOGY, 2020, 192 (11) :2010-2027