Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma: Auto-Backlund transformation, soliton-typed and other analytical solutions

被引:27
|
作者
Gao, YT [1 ]
Tian, B
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Appl Math, Beijing 100083, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Appl Phys, Beijing 100083, Peoples R China
关键词
D O I
10.1063/1.1324656
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The variable-coefficient unstable nonlinear Schrodinger equation describes the-nonlinear modulation of the high-frequency mode in the electron beam plasma, with a nonuniform background. In this paper, an auto-Backlund transformation and several families of the exact analytical solutions to;the variable-coefficient unstable nonlinear Schrodinger equation are presented. One family turns out to be soliton-typed. (C) 2001 American Institute of Physics. [DOI: 10.1063/1.1324656].
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [41] N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    PHYSICA SCRIPTA, 2010, 81 (04)
  • [42] Painleve analysis, auto-Backlund transformations, bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient modified dispersive water-wave system in fluid mechanics
    Liu, Fei-Yan
    Gao, Yi-Tian
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (02)
  • [43] PAINLEVE INTEGRABLE PROPERTY, BILINEAR FORM, BACKLUND TRANSFORMATION, KINK AND SOLITON SOLUTIONS OF A (2+1)-DIMENSIONAL VARIABLE-COEFFICIENT GENERAL COMBINED FOURTH-ORDER SOLITON EQUATION IN A FLUID OR PLASMA
    Chen, Yu-Qi
    Tian, Bo
    Qu, Qi-Xing
    Wei, Cheng-Cheng
    Yang, Dan-Yu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 742 - 759
  • [44] ANALYTIC DARK SOLITON SOLUTIONS FOR A GENERALIZED VARIABLE-COEFFICIENT HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION IN OPTICAL FIBERS USING SYMBOLIC COMPUTATION
    Meng, Xiang-Hua
    Sun, Zhi-Yuan
    Zhang, Chun-Yi
    Tian, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (04): : 499 - 509
  • [45] Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schrodinger equation from inhomogeneous optical fibers with symbolic computation
    Li, Juan
    Zhang, Hai-Qiang
    Xu, Tao
    Zhang, Ya-Xing
    Tian, Bo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13299 - 13309
  • [46] Bilinear form, bilinear Backlund transformation and dynamic features of the soliton solutions for a variable-coefficient (3+1)-dimensional generalized shallow water wave equation
    Huang, Qian-Min
    Gao, Yi-Tian
    MODERN PHYSICS LETTERS B, 2017, 31 (22):
  • [47] Odd-Fold Darboux Transformation, Breather, Rogue-Wave and Semirational Solutions on the Periodic Background for a Variable-Coefficient Derivative Nonlinear Schrodinger Equation in an Inhomogeneous Plasma
    Chen, Su-Su
    Tian, Bo
    Zhang, Chen-Rong
    ANNALEN DER PHYSIK, 2022, 534 (01)
  • [48] Comment on "Bilinear Backlund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation" (Nonlinear Dyn. 87, 2529, 2017)
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    NONLINEAR DYNAMICS, 2021, 105 (04) : 3849 - 3858
  • [49] Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma
    Da-Wei Zuo
    Yi-Tian Gao
    Long Xue
    Yu-Jie Feng
    Optical and Quantum Electronics, 2016, 48
  • [50] Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein
    Yang, Jin-Wei
    Gao, Yi-Tian
    Wang, Qi-Min
    Su, Chuan-Qi
    Feng, Yu-Jie
    Fu, Xin
    PHYSICA B-CONDENSED MATTER, 2016, 481 : 148 - 155