Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma: Auto-Backlund transformation, soliton-typed and other analytical solutions

被引:27
|
作者
Gao, YT [1 ]
Tian, B
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Appl Math, Beijing 100083, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Appl Phys, Beijing 100083, Peoples R China
关键词
D O I
10.1063/1.1324656
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The variable-coefficient unstable nonlinear Schrodinger equation describes the-nonlinear modulation of the high-frequency mode in the electron beam plasma, with a nonuniform background. In this paper, an auto-Backlund transformation and several families of the exact analytical solutions to;the variable-coefficient unstable nonlinear Schrodinger equation are presented. One family turns out to be soliton-typed. (C) 2001 American Institute of Physics. [DOI: 10.1063/1.1324656].
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [31] A variable-coefficient unstable nonlinear Schrodinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects
    Gao, YT
    Tian, B
    PHYSICS OF PLASMAS, 2003, 10 (11) : 4306 - 4313
  • [32] Auto-Bäcklund transformation and soliton-type solutions of the generalized variable-coefficient Kadomtsev-Petviashvili equation
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
    不详
    Chin. Phys. Lett., 2006, 7 (1670-1673):
  • [33] Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Zhao, Chen
    Gao, Yi-Tian
    Lan, Zhong-Zhou
    Yang, Jin-Wei
    Su, Chuan-Qi
    MODERN PHYSICS LETTERS B, 2016, 30 (24):
  • [34] Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrodinger-Maxwell-Bloch system with symbolic computation
    Guo, Rui
    Tian, Bo
    Lu, Xing
    Zhang, Hai-Qiang
    Liu, Wen-Jun
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (04) : 565 - 577
  • [35] Painleve integrability and analytical solutions of variable coefficients negative order KdV-Calogero-Bogoyavlenskii-Schiff equation using auto-Backlund transformation
    Singh, Shailendra
    Ray, S. Saha
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (02)
  • [36] Auto-Backlund transformation and two families of analytical solutions to the (2+1)-dimensional soliton breaking equation (vol 212, pg 247, 1996)
    Tian, B
    Gao, YT
    PHYSICS LETTERS A, 1996, 217 (06) : 361 - 361
  • [37] Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrodinger equation in the inhomogeneous plasmas
    Wang, Lei
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Qi, Feng-Hua
    Meng, De-Xin
    Lin, Guo-Dong
    NONLINEAR DYNAMICS, 2012, 67 (01) : 713 - 722
  • [38] Analytical soliton solutions and modulation instability for a generalized (3+1)-dimensional coupled variable-coefficient nonlinear Schrodinger equations in nonlinear optics
    Hamed, A. A.
    Shamseldeen, S.
    Latif, M. S. Abdel
    Nour, H. M.
    MODERN PHYSICS LETTERS B, 2021, 35 (10):
  • [39] Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation
    Li, Juan
    Xu, Tao
    Meng, Xiang-Hua
    Zhang, Ya-Xing
    Zhang, Hai-Qiang
    Tian, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1443 - 1455
  • [40] Painleve analysis, Lax pair, Backlund transformation and multi-soliton solutions for a generalized variable-coefficient KdV-mKdV equation in fluids and plasmas
    Meng, Gao-Qing
    Gao, Yi-Tian
    Yu, Xin
    Shen, Yu-Jia
    Qin, Yi
    PHYSICA SCRIPTA, 2012, 85 (05)