Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma: Auto-Backlund transformation, soliton-typed and other analytical solutions

被引:27
|
作者
Gao, YT [1 ]
Tian, B
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Appl Math, Beijing 100083, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Appl Phys, Beijing 100083, Peoples R China
关键词
D O I
10.1063/1.1324656
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The variable-coefficient unstable nonlinear Schrodinger equation describes the-nonlinear modulation of the high-frequency mode in the electron beam plasma, with a nonuniform background. In this paper, an auto-Backlund transformation and several families of the exact analytical solutions to;the variable-coefficient unstable nonlinear Schrodinger equation are presented. One family turns out to be soliton-typed. (C) 2001 American Institute of Physics. [DOI: 10.1063/1.1324656].
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [21] Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation
    Lan, Zhong-Zhou
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 243 - 248
  • [22] Auto-Backlund transformations and analytic solutions of a generalized (4+1)-dimensional variable-coefficient Fokas equation for the shallow water waves
    Chen, Yu-Qi
    Tian, Bo
    Shen, Yuan
    Zhou, Tian-Yu
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [23] Bilinear Backlund transformation, soliton and periodic wave solutions for a -dimensional variable-coefficient generalized shallow water wave equation
    Huang, Qian-Min
    Gao, Yi-Tian
    Jia, Shu-Liang
    Wang, Ya-Le
    Deng, Gao-Fu
    NONLINEAR DYNAMICS, 2017, 87 (04) : 2529 - 2540
  • [24] Soliton solutions and a Backlund transformation for a generalized nonlinear Schrodinger equation with variable coefficients from optical fiber communications
    Lue, Xing
    Zhu, Hong-Wu
    Meng, Xiang-Hua
    Yang, Zai-Chun
    Tian, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1305 - 1315
  • [25] Symbolic computation on the long gravity water waves: scaling transformations, bilinear forms, N-soliton solutions and auto-Backlund transformation for a variable-coefficient variant Boussinesq system
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [26] Alfven solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrodinger equation in an inhomogeneous plasma
    Chen, Su -Su
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Sun, Yan
    Du, Xia-Xia
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [27] Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrodinger equation in an optical fiber, fluid or plasma
    Zuo, Da-Wei
    Gao, Yi-Tian
    Xue, Long
    Feng, Yu-Jie
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (01) : 1 - 14
  • [28] Painleve property, auto-Backlund transformation and analytic solutions of a variable-coefficient modified Korteweg-de Vries model in a hot magnetized dusty plasma with charge fluctuations
    Gai, Xiao-Ling
    Gao, Yi-Tian
    Yu, Xin
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) : 271 - 279
  • [29] N-soliton solutions, Backlund transformation and Lax Pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation
    Lan, Zhong-Zhou
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [30] Bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Wang, Dong
    Gao, Yi-Tian
    Su, Jing-Jing
    Ding, Cui-Cui
    MODERN PHYSICS LETTERS B, 2020, 34 (30):