Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma: Auto-Backlund transformation, soliton-typed and other analytical solutions

被引:27
|
作者
Gao, YT [1 ]
Tian, B
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Appl Math, Beijing 100083, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Appl Phys, Beijing 100083, Peoples R China
关键词
D O I
10.1063/1.1324656
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The variable-coefficient unstable nonlinear Schrodinger equation describes the-nonlinear modulation of the high-frequency mode in the electron beam plasma, with a nonuniform background. In this paper, an auto-Backlund transformation and several families of the exact analytical solutions to;the variable-coefficient unstable nonlinear Schrodinger equation are presented. One family turns out to be soliton-typed. (C) 2001 American Institute of Physics. [DOI: 10.1063/1.1324656].
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [11] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [12] Painleve analysis, auto-Backlund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV) equation
    Wei, Guang-Mei
    Gao, Yi-Tian
    Hu, Wei
    Zhang, Chun-Yi
    EUROPEAN PHYSICAL JOURNAL B, 2006, 53 (03): : 343 - 350
  • [13] Soliton and breather solutions for the seventh-order variable-coefficient nonlinear Schrodinger equation
    Jin, Jie
    Zhang, Yi
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (08)
  • [14] Auto-Backlund transformation and two families of analytical solutions to the (2+1)-dimensional soliton breaking equation
    Tian, B
    Gao, YT
    PHYSICS LETTERS A, 1996, 212 (05) : 247 - 252
  • [15] AUTO-BACKLUND TRANSFORMATION, LAX PAIRS, AND PAINLEVE PROPERTY OF A VARIABLE-COEFFICIENT KORTEWEG-DEVRIES EQUATION .1.
    NIRMALA, N
    VEDAN, MJ
    BABY, BV
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2640 - 2643
  • [16] Lax Pair, Improved Γ-Riccati Backlund Transformation and Soliton-Like Solutions to Variable-Coefficient Higher-Order Nonlinear Schrodinger Equation in Optical Fibers
    Lu, Yinglin
    Wei, Guangmei
    Liu, Xin
    ACTA APPLICANDAE MATHEMATICAE, 2019, 164 (01) : 185 - 192
  • [17] Lax pair, auto-Backlund transformation and conservation law for a generalized variable-coefficient KdV equation with external-force term
    Zhang Yuping
    Liu Jing
    Wei Guangmei
    APPLIED MATHEMATICS LETTERS, 2015, 45 : 58 - 63
  • [18] N-SOLITON SOLUTIONS, AUTO-BACKLUND TRANSFORMATIONS AND LAX PAIR FOR A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION VIA SYMBOLIC COMPUTATION
    Li, Li-Li
    Tian, Bo
    Zhang, Chun-Yi
    Zhang, Hai-Qiang
    Li, Juan
    Xu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (10): : 2383 - 2393
  • [19] Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schrodinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation
    Zeng, Zhi-Fang
    Liu, Jian-Guo
    Jiang, Yan
    Nie, Bin
    FUNDAMENTA INFORMATICAE, 2016, 145 (02) : 207 - 219
  • [20] Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Lan, Zhongzhou
    APPLIED MATHEMATICS LETTERS, 2020, 102