Variable-coefficient unstable nonlinear Schrodinger equation modeling electron beam plasma: Auto-Backlund transformation, soliton-typed and other analytical solutions

被引:27
作者
Gao, YT [1 ]
Tian, B
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Appl Math, Beijing 100083, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Appl Phys, Beijing 100083, Peoples R China
关键词
D O I
10.1063/1.1324656
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The variable-coefficient unstable nonlinear Schrodinger equation describes the-nonlinear modulation of the high-frequency mode in the electron beam plasma, with a nonuniform background. In this paper, an auto-Backlund transformation and several families of the exact analytical solutions to;the variable-coefficient unstable nonlinear Schrodinger equation are presented. One family turns out to be soliton-typed. (C) 2001 American Institute of Physics. [DOI: 10.1063/1.1324656].
引用
收藏
页码:67 / 73
页数:7
相关论文
共 13 条
[1]   Computer algebra, Painleve analysis and the time-dependent-coefficient nonlinear Schrodinger equation (vol 31, pg 115, 1996) [J].
Gao, YT ;
Tian, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (8-9) :1107-1108
[2]   SLOWLY VARYING SOLITARY WAVES .2. NON-LINEAR SCHRODINGER EQUATION [J].
GRIMSHAW, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 368 (1734) :377-388
[3]   THE RAYLEIGH-TAYLOR INSTABILITY AND NONLINEAR-WAVES [J].
IIZUKA, T ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (09) :3182-3193
[5]   Backlund transformations and Painleve analysis: Exact soliton solutions for the unstable nonlinear Schrodinger equation modeling electron beam plasma [J].
Khater, AH ;
Callebaut, DK ;
Ibrahim, RS .
PHYSICS OF PLASMAS, 1998, 5 (02) :395-400
[6]   Computer algebra, Painleve analysis and the time-dependent-coefficient nonlinear Schrodinger equation [J].
Tian, B ;
Gao, YT .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (11) :115-119
[7]  
Wadati M., 1991, Chaos, Solitons and Fractals, V1, P249, DOI 10.1016/0960-0779(91)90035-8
[8]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526
[9]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS .2. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE [J].
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) :1405-1413
[10]   SOLITON SOLUTION AND ITS PROPERTY OF UNSTABLE NONLINEAR SCHRODINGER-EQUATION [J].
YAJIMA, T ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (01) :41-47