共 50 条
Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)
被引:74
|作者:
Harlan, Benjamin A.
[1
]
Pehar, Mariana
[1
]
Sharma, Deep R.
[1
]
Beeson, Gyda
[2
]
Beeson, Craig C.
[2
]
Vargas, Marcelo R.
[1
]
机构:
[1] Med Univ S Carolina, Dept Cell & Mol Pharmacol & Expt Therapeut, Basic Sci Bldg,Rm 358,MSC 509,173 Ashley Ave, Charleston, SC 29425 USA
[2] Med Univ S Carolina, South Carolina Coll Pharm Drug Discovery & Biomed, Charleston, SC 29425 USA
基金:
美国国家卫生研究院;
关键词:
MOTOR-NEURON DEGENERATION;
NICOTINAMIDE RIBOSIDE;
NRF2;
ACTIVATION;
MOUSE MODEL;
METABOLISM;
SIRT3;
BIOSYNTHESIS;
LOCALIZATION;
MITOCHONDRIA;
INHIBITION;
D O I:
10.1074/jbc.M115.698779
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS.
引用
收藏
页码:10836 / 10846
页数:11
相关论文