Nonlinear eigenvalue problems for the (p, q)-Laplacian

被引:21
作者
Papageorgiou, Nikolaos S. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu D. [3 ,4 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 172卷
基金
中国国家自然科学基金;
关键词
(p; q)-Laplacian; Constant sign and nodal solutions; Critical groups; Unique continuation; Nonlinear regularity; INDEFINITE; EXISTENCE; INFINITY; PLUS;
D O I
10.1016/j.bulsci.2021.103039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric (p, q)-equations with sign-changing reaction and Robin boundary condition. We show that for all values of the parameter.bigger than a certain value which we determine precisely, the problem has at least three nontrivial solutions all with sign information and ordered. For the particular case of (p, 2)-equations we produce a second nodal solution, for a total of four nontrivial solutions. Under symmetry conditions, we show the existence of infinitely many nodal solutions. The same results are also valid for the Dirichlet problem. (c) 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:29
相关论文
共 50 条
[41]   EIGENVALUE PROBLEMS FOR p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES [J].
Guo, Mingzhou ;
Sun, Hong-Rui .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) :999-1011
[42]   A POSITIVE SOLUTION FOR AN ANISOTROPIC (p, q)-LAPLACIAN [J].
Razani, Abdolrahman ;
Figueiredo, Giovany M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06) :1629-1643
[43]   PERTURBATIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) :1403-1431
[44]   Mckean-Type Estimates for the First Eigenvalue of the p-Laplacian and (p, q)-Laplacian Operators on Finsler Manifolds [J].
Hajiaghasi, Sakineh ;
Azami, Shahroud .
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01) :358-366
[45]   POSITIVE SOLUTIONS FOR SINGULAR (p, q)-LAPLACIAN EQUATIONS WITH NEGATIVE PERTURBATION [J].
Papageorgiou, Nikolaos S. ;
Vetro, Clogero ;
Vetro, Francesca .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (25)
[46]   Limits as p → a of p-laplacian eigenvalue problems perturbed with a concave or convex term [J].
Charro, Fernando ;
Parini, Enea .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (1-2) :403-425
[47]   ON THE EIGENVALUE SET OF THE (p, q)-LAPLACIAN WITH A NEUMANN-STEKLOV BOUNDARY CONDITION [J].
Barbu, Luminita ;
Morosanu, Gheorghe .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (5-6) :437-452
[48]   Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems [J].
Marano, Salvatore A. ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 :118-129
[49]   Existence of a positive solution for problems with (p,q)-Laplacian and convection term in RN [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Tanaka, Mieko .
BOUNDARY VALUE PROBLEMS, 2016,
[50]   NONLINEAR INITIAL VALUE PROBLEMS WITH p-LAPLACIAN [J].
Kong, Qingkai ;
Wang, Xiaofei .
DYNAMIC SYSTEMS AND APPLICATIONS, 2010, 19 (01) :33-43