Nonlinear eigenvalue problems for the (p, q)-Laplacian

被引:21
作者
Papageorgiou, Nikolaos S. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu D. [3 ,4 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 172卷
基金
中国国家自然科学基金;
关键词
(p; q)-Laplacian; Constant sign and nodal solutions; Critical groups; Unique continuation; Nonlinear regularity; INDEFINITE; EXISTENCE; INFINITY; PLUS;
D O I
10.1016/j.bulsci.2021.103039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric (p, q)-equations with sign-changing reaction and Robin boundary condition. We show that for all values of the parameter.bigger than a certain value which we determine precisely, the problem has at least three nontrivial solutions all with sign information and ordered. For the particular case of (p, 2)-equations we produce a second nodal solution, for a total of four nontrivial solutions. Under symmetry conditions, we show the existence of infinitely many nodal solutions. The same results are also valid for the Dirichlet problem. (c) 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:29
相关论文
共 50 条
[31]   SOLVABILITY FOR COUPLED IMPULSIVE FRACTIONAL PROBLEMS OF THE KIRCHHOFF TYPE WITH P&Q-LAPLACIAN [J].
Wang, Yi ;
Tian, Lixin .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06) :3099-3133
[32]   On the first eigenvalue for a (p(x), q(x))-Laplacian elliptic system [J].
Moussaoui, Abdelkrim ;
Velin, Jean .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (66) :1-22
[33]   Inverse problems for a class of elliptic obstacle problems involving multivalued convection term and weighted (p, q)-Laplacian [J].
Zeng, Shengda ;
Migorski, Stanislaw ;
Khan, Akhtar A. ;
Yao, Jen-Chih .
OPTIMIZATION, 2023, 72 (01) :321-349
[34]   Nonstandard Dirichlet problems with competing (p, q)-Laplacian, convection, and convolution [J].
Motreanu, Dumitru ;
Motreanu, Viorica Venera .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01) :95-103
[35]   Nontrivial solutions for a nonlinear elliptic equation of (p, q)-Laplacian type with a discontinuous nonlinearity in RN [J].
Zouai, Raid ;
Benouhiba, Nawel .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) :247-262
[36]   Multiple Solutions to (p, q)-Laplacian Problems with Resonant Concave Nonlinearity [J].
Marano, Salvatore A. ;
Mosconi, Sunra J. N. ;
Papageorgiou, Nikolaos S. .
ADVANCED NONLINEAR STUDIES, 2016, 16 (01) :51-65
[37]   Three positive solutions for a nonlinear partial discrete Dirichlet problem with (p,q)-Laplacian operator [J].
Xiong, Feng ;
Zhou, Zhan .
BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
[38]   AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN [J].
Perez-Llanos, Mayte ;
Rossi, Julio D. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (06) :1057-1076
[39]   On the eigenvalues of the p&q-fractional Laplacian [J].
Bahrouni, Sabri ;
Hajaiej, Hichem ;
Song, Linjie .
TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (04) :735-759
[40]   Some Remarks on a Class of p(x)-Laplacian Robin Eigenvalue Problems [J].
Nguyen Thanh Chung .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)