Nonlinear eigenvalue problems for the (p, q)-Laplacian

被引:21
作者
Papageorgiou, Nikolaos S. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu D. [3 ,4 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 172卷
基金
中国国家自然科学基金;
关键词
(p; q)-Laplacian; Constant sign and nodal solutions; Critical groups; Unique continuation; Nonlinear regularity; INDEFINITE; EXISTENCE; INFINITY; PLUS;
D O I
10.1016/j.bulsci.2021.103039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric (p, q)-equations with sign-changing reaction and Robin boundary condition. We show that for all values of the parameter.bigger than a certain value which we determine precisely, the problem has at least three nontrivial solutions all with sign information and ordered. For the particular case of (p, 2)-equations we produce a second nodal solution, for a total of four nontrivial solutions. Under symmetry conditions, we show the existence of infinitely many nodal solutions. The same results are also valid for the Dirichlet problem. (c) 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:29
相关论文
共 50 条
[21]   COMPARISON AND POSITIVE SOLUTIONS FOR PROBLEMS WITH THE (p, q)-LAPLACIAN AND A CONVECTION TERM [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Motreanu, Dumitru .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) :687-698
[22]   Remarks on eigenvalue problems involving the p(x)-Laplacian [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :85-98
[23]   EIGENVALUE PROBLEMS FOR A CLASS OF NONLINEAR HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN OPERATOR [J].
Yang, Wengui .
MATHEMATICA SLOVACA, 2020, 70 (01) :107-124
[24]   Conformal bounds for the first eigenvalue of the (p, q)-Laplacian system [J].
Kolaei, Mohammad Javad Habibi Vosta ;
Azami, Shahroud .
TAMKANG JOURNAL OF MATHEMATICS, 2024, 55 (04) :371-389
[25]   A NONLINEAR EIGENVALUE PROBLEM FOR THE PERIODIC SCALAR p-LAPLACIAN [J].
Barletta, Giuseppina ;
Livera, Roberto ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) :1075-1086
[26]   EXISTENCE AND UNIQUENESS FOR A p-LAPLACIAN NONLINEAR EIGENVALUE PROBLEM [J].
Franzina, Giovanni ;
Lamberti, Pier Domenico .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
[27]   A Class of p-q-Laplacian Type Equation with Potentials Eigenvalue Problem in RN [J].
Wu, Mingzhu ;
Yang, Zuodong .
BOUNDARY VALUE PROBLEMS, 2009,
[28]   Quasilinear eigenvalue problems with singular weights for the p-Laplacian [J].
Drabek, Pavel ;
Hernandez, Jesus .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) :1069-1086
[29]   On a class of critical (p, q)-Laplacian problems [J].
Candito, Pasquale ;
Marano, Salvatore A. ;
Perera, Kanishka .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06) :1959-1972
[30]   Resonance problems for (p, q)-Laplacian systems [J].
Zhao, Xiao-Xiao ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :1019-1030