A new model-based fractional order differentiator with application to fractional order PID controllers

被引:0
|
作者
Wei, Xing [1 ]
Liu, Da-Yan [1 ]
Boutat, Driss [1 ]
机构
[1] Univ Orleans, INSA Ctr Val Loire, PRISME EA 4229, F-18022 Bourges, France
关键词
DERIVATIVES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims at designing a fractional order differentiator based on a integer order linear system with zero initial conditions, where the fractional derivatives of the output are estimated using the output observation corrupted by a non zero-mean noise. Firstly, an integral algebraic formula for the fractional derivatives of the output is exactly obtained in continuous noise free case, using an appropriated modulating function. Unlike the improper integrals in the definitions of the fractional derivatives, the obtained formula is given by a proper integral. Then, an additional condition is added to the used modulating function in order to deal with the non zero-mean noise. After constructing the needed modulating function, a digital fractional order differentiator is proposed in discrete noisy case with some error analysis. Finally, the proposed fractional order differentiator is applied to design a fractional order PID controller for an integer order linear system.
引用
收藏
页码:3718 / 3723
页数:6
相关论文
共 50 条
  • [21] On PID Controllers for a Complex-Order Fractional Model of an Automotive Injection System
    Altamura, A.
    Lino, P.
    Maione, G.
    Kapetina, M.
    Rapaic, M. R.
    Jelicic, Z. D.
    IFAC PAPERSONLINE, 2024, 58 (12): : 119 - 124
  • [22] Linear fractional order system identification using adjustable fractional order differentiator
    Idiou, Daoud
    Charef, Abdelfatah
    Djouambi, Abdelbaki
    IET SIGNAL PROCESSING, 2014, 8 (04) : 398 - 409
  • [23] Stabilization of Fractional Order PID Controllers for Time-Delay Fractional Order Plants by Using Genetic Algorithm
    Tufenkci, Sevilay
    Senol, Bilal
    Alagoz, Baris Baykant
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [24] An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
    Hamamci, Serdar Ethem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) : 1964 - 1969
  • [25] Inverted Pendulum Stabilization by means of Fractional Order PID Controllers
    Orostica, Rodrigo
    Duarte-Mermoud, Manuel A.
    Jauregui, Cristian
    Lefranc, Gaston
    2017 CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2017,
  • [26] Tuning guidelines for fractional order PID controllers: Rules of thumb
    Dastjerdi, Ali Ahmadi
    Saikumar, Niranjan
    HosseinNia, S. Hassan
    MECHATRONICS, 2018, 56 : 26 - 36
  • [27] ABC Algorithm Based System Modelling for Tuning the Fractional Order PID Controllers
    Senberber, Halit
    Bagis, Aytekin
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2018, 24 (05) : 3 - 9
  • [28] On the Use of Fractional-Order PID Controllers for TITO Processes
    Arrieta, Orlando
    Barbieri, Alessandro
    Meneses, Helber
    Padula, Fabrizio
    Vilanova, Ramon
    Visioli, Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 3284 - 3289
  • [29] Back to Basics: Meaning of the Parameters of Fractional Order PID Controllers
    Tejado, Ines
    Vinagre, Blas M.
    Emilio Traver, Jose
    Prieto-Arranz, Javier
    Nuevo-Gallardo, Cristina
    MATHEMATICS, 2019, 7 (06)
  • [30] Stabilization using fractional-order PI and PID controllers
    Serdar E. Hamamci
    Nonlinear Dynamics, 2008, 51 : 329 - 343