Strong-disorder renormalization group for periodically driven systems

被引:9
作者
Berdanier, William [1 ]
Kolodrubetz, Michael [2 ]
Parameswaran, S. A. [3 ]
Vasseur, Romain [4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[3] Univ Oxford, Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
关键词
QUANTUM-STATISTICAL-MECHANICS; ISING SPIN CHAINS; MANY-BODY SYSTEM; FIELD; TIME; THERMALIZATION; LOCALIZATION; INSULATOR; DYNAMICS; BEHAVIOR;
D O I
10.1103/PhysRevB.98.174203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quenched randomness can lead to robust nonequilibrium phases of matter in periodically driven (Floquet) systems. Analyzing transitions between such dynamical phases requires a method capable of treating the twin complexities of disorder and discrete time-translation symmetry. We introduce a real-space renormalization group approach, asymptotically exact in the strong-disorder limit, and exemplify its use on the periodically driven interacting quantum Ising model. We analyze the universal physics near the critical lines and multicritical point of this model, and demonstrate the robustness of our results to the inclusion of weak interactions.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Classification of topological phases in periodically driven interacting systems [J].
Else, Dominic V. ;
Nayak, Chetan .
PHYSICAL REVIEW B, 2016, 93 (20)
[32]   Flow Equation Approach to Periodically Driven Quantum Systems [J].
Vogl, Michael ;
Laurell, Pontus ;
Barr, Aaron D. ;
Fiete, Gregory A. .
PHYSICAL REVIEW X, 2019, 9 (02)
[33]   η-pairing superfluid in periodically-driven fermionic Hubbard model with strong attraction [J].
Kitamura, Sota ;
Aoki, Hideo .
PHYSICAL REVIEW B, 2016, 94 (17)
[34]   Coarse-graining master equation for periodically driven systems [J].
Hotz, Ronja ;
Schaller, Gernot .
PHYSICAL REVIEW A, 2021, 104 (05)
[35]   Statistics of work distribution in periodically driven closed quantum systems [J].
Dutta, Anirban ;
Das, Arnab ;
Sengupta, K. .
PHYSICAL REVIEW E, 2015, 92 (01)
[36]   Adaptive density matrix renormalization group for disordered systems [J].
Xavier, J. C. ;
Hoyos, Jose A. ;
Miranda, E. .
PHYSICAL REVIEW B, 2018, 98 (19)
[37]   Emergent symmetries in prethermal phases of periodically driven quantum systems [J].
Banerjee, Tista ;
Sengupta, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (13)
[38]   Renormalization Group scale-setting in astrophysical systems [J].
Domazet, Silvije ;
Stefancic, Hrvoje .
PHYSICS LETTERS B, 2011, 703 (01) :1-6
[39]   Dynamical relaxation of correlators in periodically driven integrable quantum systems [J].
Aditya, Sreemayee ;
Samanta, Sutapa ;
Sen, Arnab ;
Sengupta, K. ;
Sen, Diptiman .
PHYSICAL REVIEW B, 2022, 105 (10)
[40]   Exponential Bound for the Heating Rate of Periodically Driven Spin Systems [J].
Zobov, V. E. ;
Kucherov, M. M. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2019, 128 (04) :641-649