ALLocator: An Interactive Web Platform for the Analysis of Metabolomic LC-ESI-MS Datasets, Enabling Semi-Automated, User-Revised Compound Annotation and Mass Isotopomer Ratio Analysis

被引:24
作者
Kessler, Nikolas [1 ,4 ,6 ]
Walter, Frederik [2 ,3 ,6 ]
Persicke, Marcus [3 ]
Albaum, Stefan P. [4 ]
Kalinowski, Joern [3 ]
Goesmann, Alexander [5 ]
Niehaus, Karsten [2 ]
Nattkemper, Tim W. [1 ]
机构
[1] Univ Bielefeld, Biodata Min Grp, D-33615 Bielefeld, Germany
[2] Univ Bielefeld, Dept Proteome & Metabolome Res, Ctr Biotechnol, D-33615 Bielefeld, Germany
[3] Univ Bielefeld, Ctr Biotechnol, D-33615 Bielefeld, Germany
[4] Univ Bielefeld, Ctr Biotechnol, Bioinformat Resource Facil, D-33615 Bielefeld, Germany
[5] Univ Giessen, D-35392 Giessen, Germany
[6] Univ Bielefeld, Ctr Biotechnol, CLIB Grad Cluster Ind Biotechnol, D-33615 Bielefeld, Germany
来源
PLOS ONE | 2014年 / 9卷 / 11期
关键词
CORYNEBACTERIUM-GLUTAMICUM; SPECTROMETRY DATA; KYOTO ENCYCLOPEDIA; EXTRACTION; QUANTIFICATION; PEPTIDES; MZMINE; GENES; KEGG; TOOL;
D O I
10.1371/journal.pone.0113909
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-C-13-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution "ALLocatorSD" generates pseudo spectra and automatically identifies peaks emerging from the U-C-13-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the L-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and L-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (gamma-) glutamyl dipeptides in the same strains. ALLocator is available online at: https://allocator.cebitec.uni-bielefeld.de. A login is required, but freely available.
引用
收藏
页数:21
相关论文
共 39 条
  • [11] Fragmentation reactions of protonated peptides containing glutamine or glutamic acid
    Harrison, AG
    [J]. JOURNAL OF MASS SPECTROMETRY, 2003, 38 (02): : 174 - 187
  • [12] STUDIES ON GAMMA-GLUTAMYLPEPTIDES IN L-GLUTAMIC ACID FERMENTATION BROTHS .2. GAMMA-GLUTAMYLPEPTIDE FORMATIVE ACTIVITY OF CORYNEBACTERIUM-GLUTAMICUM BY REVERSE REACTION OF GAMMA-GLUTAMYLPEPTIDE HYDROLYTIC ENZYME
    HASEGAWA, M
    MATSUBARA, I
    [J]. AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1978, 42 (02): : 371 - 381
  • [13] MassBank: a public repository for sharing mass spectral data for life sciences
    Horai, Hisayuki
    Arita, Masanori
    Kanaya, Shigehiko
    Nihei, Yoshito
    Ikeda, Tasuku
    Suwa, Kazuhiro
    Ojima, Yuya
    Tanaka, Kenichi
    Tanaka, Satoshi
    Aoshima, Ken
    Oda, Yoshiya
    Kakazu, Yuji
    Kusano, Miyako
    Tohge, Takayuki
    Matsuda, Fumio
    Sawada, Yuji
    Hirai, Masami Yokota
    Nakanishi, Hiroki
    Ikeda, Kazutaka
    Akimoto, Naoshige
    Maoka, Takashi
    Takahashi, Hiroki
    Ara, Takeshi
    Sakurai, Nozomu
    Suzuki, Hideyuki
    Shibata, Daisuke
    Neumann, Steffen
    Iida, Takashi
    Tanaka, Ken
    Funatsu, Kimito
    Matsuura, Fumito
    Soga, Tomoyoshi
    Taguchi, Ryo
    Saito, Kazuki
    Nishioka, Takaaki
    [J]. JOURNAL OF MASS SPECTROMETRY, 2010, 45 (07): : 703 - 714
  • [14] X13CMS: Global Tracking of Isotopic Labels in Untargeted Metabolomics
    Huang, Xiaojing
    Chen, Ying-Jr
    Cho, Kevin
    Nikolskiy, Igor
    Crawford, Peter A.
    Patti, Gary J.
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (03) : 1632 - 1639
  • [15] KEGG: Kyoto Encyclopedia of Genes and Genomes
    Kanehisa, M
    Goto, S
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 27 - 30
  • [16] MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
    Katajamaa, M
    Miettinen, J
    Oresic, M
    [J]. BIOINFORMATICS, 2006, 22 (05) : 634 - 636
  • [17] ISOLEUCINE SYNTHESIS IN CORYNEBACTERIUM-GLUTAMICUM - MOLECULAR ANALYSIS OF THE ILVB-ILVN-ILVC OPERON
    KEILHAUER, C
    EGGELING, L
    SAHM, H
    [J]. JOURNAL OF BACTERIOLOGY, 1993, 175 (17) : 5595 - 5603
  • [18] MeltDB 2.0-advances of the metabolomics software system
    Kessler, Nikolas
    Neuweger, Heiko
    Bonte, Anja
    Langenkaemper, Georg
    Niehaus, Karsten
    Nattkemper, Tim W.
    Goesmann, Alexander
    [J]. BIOINFORMATICS, 2013, 29 (19) : 2452 - 2459
  • [19] Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry
    Kind, Tobias
    Fiehn, Oliver
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [20] Kuhl C, 2010, ANAL CHEM, V84, P1