Time and space adaptivity for the second-order wave equation

被引:41
作者
Bernardi, C
Süli, E
机构
[1] CNRS, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris 05, France
[3] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
wave equation; backward Euler scheme; finite elements; error indicators;
D O I
10.1142/S0218202505000339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to show that, for a linear second-order hyperbolic equation discretized by the backward Euler scheme in time and continuous piecewise affine finite elements in space, the adaptation of the time steps can be combined with spatial mesh adaptivity in an optimal way. We derive a priori and a posteriori error estimates which admit, as much as it is possible, the decoupling of the errors committed in the temporal and spatial discretizations.
引用
收藏
页码:199 / 225
页数:27
相关论文
共 21 条
[1]   A posteriori finite element error estimation for second-order hyperbolic problems [J].
Adjerid, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (41-42) :4699-4719
[2]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[3]  
Babuska I., 2001, NUMER MATH SCI COMP
[4]   Adaptive finite element techniques for the acoustic wave equation [J].
Bangerth, W ;
Rannacher, R .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (02) :575-591
[5]  
Bangerth W., 1999, E W J NUMER MATH, V7, P263
[6]  
BANGERTH W, 2000, MATH NUMERICAL ASPEC, P725
[7]  
BERGAM A, IN PRESS MATH COMPUT
[8]  
Bernardi C., 2004, MATH APPL, V45
[9]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :373-406
[10]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .1. A POSTERIORI ERROR ESTIMATION [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :339-371