CO2 hydrogenation to light olefins over Cu-CeO2/SAPO-34 catalysts: Product distribution and optimization

被引:44
作者
Sedighi, Mehdi [1 ,2 ]
Mohammadi, Majid [3 ]
机构
[1] Univ Qom, Div Energy Syst, Dept Chem Engn, Qom, Iran
[2] Univ Qom, Ctr Environm Res, Qom, Iran
[3] Qom Univ Technol, Dept Energy Engn, Fac Sci, Qom, Iran
关键词
Carbon dioxide; Hydrogenation; CuCe/SAPO-34; catalyst; Light olefins; Optimization; HIGHLY SELECTIVE CONVERSION; CARBON-DIOXIDE; THERMAL-CRACKING; ASPHALTENE PARTICLES; TIO2/SIO2; NANOFLUIDS; METHANOL CONVERSION; CU/CEO2; CATALYSTS; SAPO-34; SYNTHESIS; HEAVY FEEDSTOCK; CRUDE-OIL;
D O I
10.1016/j.jcou.2019.10.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The direct conversion of carbon dioxide into hydrocarbons is a very desirable but difficult approach for achieving lower value-added olefins with minimal CO selectivity. In this effort, we report the direct conversion of CO2 into light olefins on a Cu/CeO2 hybrid catalyst mixed with SAPO-34 zeolite. The samples are characterized by N-2 sorption, XRD, TEM, SEM, NH3-TPD and H-2 -TPR. The results showed that the acidity of modified zeolite had decreased. The response surface methodology has been used to optimize the operating parameters (temperature and space velocity (SV)) of process. A high olefin selectivity of 70.4% has been obtained on CuCe/SAPO-34 at H-2/CO2= 3, 10 h, 382.46 degrees C, 17.33 L/g.h and 20 bar. The optimum operating conditions for multiple responses have also been achieved. The optimal values are T = 396.26 degrees C and SV = 5.80 L/g.h. Under these conditions, the predicted olefin and CO selectivity and CO2 conversion are 61.83%, 57.11% and 13.15%, respectively. Multiple optimization outputs are outstanding for obtaining the suitable operating conditions.
引用
收藏
页码:236 / 244
页数:9
相关论文
共 72 条
[1]   Study of CuZnMOx oxides (M = Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol [J].
Angelo, Laetitia ;
Kobl, Kilian ;
Tejada, Leidy Marcela Martinez ;
Zimmermann, Yvan ;
Parkhomenko, Ksenia ;
Roger, Anne-Cecile .
COMPTES RENDUS CHIMIE, 2015, 18 (03) :250-260
[2]   Simultaneous effects of water, TEAOH and morpholine on SAPO-34 synthesis and its performance in MTO process [J].
Bahrami, Hussein ;
Darian, Jafar Towfighi ;
Sedighi, Mehdi .
MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 261 :111-118
[3]   Structural and textural features of TiO2/SAPO-34 nanocomposite prepared by the sol-gel method [J].
Bellatreche, Salima ;
Hasnaoui, Abdelkrim ;
Boukoussa, Bouhadjar ;
Garcia-Aguilar, Jaime ;
Berenguer-Murcia, Angel ;
Cazorla-Amoros, Diego ;
Bengueddach, Abdelkader .
RESEARCH ON CHEMICAL INTERMEDIATES, 2016, 42 (12) :8039-8053
[4]   Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:: Formation of a Ce1-xCuxO2-δ solid solution [J].
Bera, P ;
Priolkar, KR ;
Sarode, PR ;
Hegde, MS ;
Emura, S ;
Kumashiro, R ;
Lalla, NP .
CHEMISTRY OF MATERIALS, 2002, 14 (08) :3591-3601
[5]   Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons [J].
Boreriboon, Nuttakorn ;
Jiang, Xiao ;
Song, Chunshan ;
Prasassarakich, Pattarapan .
JOURNAL OF CO2 UTILIZATION, 2018, 25 :330-337
[6]   Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution [J].
Chen, Jingyu ;
Wang, Xu ;
Wu, Dakai ;
Zhang, Jianli ;
Ma, Qingxiang ;
Gao, Xinhua ;
Lai, Xiaoyong ;
Xia, Hongqiang ;
Fan, Subing ;
Zhao, Tian-Sheng .
FUEL, 2019, 239 :44-52
[7]   Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process [J].
Chen, JQ ;
Bozzano, A ;
Glover, B ;
Fuglerud, T ;
Kvisle, S .
CATALYSIS TODAY, 2005, 106 (1-4) :103-107
[8]   Entropy generation minimization for CO2 hydrogenation to light olefins [J].
Chen, Lingen ;
Zhang, Lei ;
Xia, Shaojun ;
Sun, Fengrui .
ENERGY, 2018, 147 :187-196
[9]   Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts [J].
Choi, Eun Jeong ;
Lee, Yong Hee ;
Lee, Dae-Won ;
Moon, Dong-Ju ;
Lee, Kwan-Young .
MOLECULAR CATALYSIS, 2017, 434 :146-153
[10]   Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation [J].
Cui, Xu ;
Gao, Peng ;
Li, Shenggang ;
Yang, Chengguang ;
Liu, Ziyu ;
Wang, Hui ;
Zhong, Liangshu ;
Sun, Yuhan .
ACS CATALYSIS, 2019, 9 (05) :3866-3876