Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing

被引:72
作者
Song, Yonghai [1 ]
He, Zhifang [1 ]
Hou, Haoqing [1 ]
Wang, Xiaolan [1 ]
Wang, Li [1 ]
机构
[1] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3O4; Graphene oxide; Electrocatalytic oxidation; Cysteine; N-acetyl cysteine; GLASSY-CARBON ELECTRODE; ELECTROCATALYTIC OXIDATION; VOLTAMMETRIC ANALYSIS; NANOPARTICLES; GRAPHENE; COBALT; DERIVATIZATION; FLUORESCENCE; CHITOSAN; FILMS;
D O I
10.1016/j.electacta.2012.03.077
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Fe3O4-graphene oxide (Fe3O4-GO) nanocomposites were prepared by a chemical co-precipitation of FeSO4, FeCl3,center dot NH3 center dot H2O and GO. The Fe3O4-GO was characterized by scanning electron microscopy. X-ray powder diffraction, thermogravimetric analysis and electrochemical method. The results showed that ultrafine Fe3O4 nanoparticles was prepared and densely assembled on GO nanosheets. The Fe3O4-GO exhibits large surface area and high catalysis towards the oxidation of cysteine and N-acetyl cysteine, which could be used for cysteine and N-acetyl cysteine sensing with a wide linear range (0.5-13.5 mM for cysteine and 0.12-13.3 mM for N-acetyl cysteine) and low detection limit (56 mu M for cysteine and 25 mu M for N-acetyl cysteine). The excellent catalytic activity, high sensitivity and good stability made such Fe3O4-GO nanocomposites to be promising nanomaterials for constructing nonenzymatic sensor. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 48 条
[1]   Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection [J].
Agrafiotou, Panagiota ;
Sotiropoulos, Sotiris ;
Pappa-Louisi, Adriani .
JOURNAL OF SEPARATION SCIENCE, 2009, 32 (07) :949-954
[2]   Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenol A [J].
Alkasir, Ramiz S. J. ;
Ganesana, Mallikarjunarao ;
Won, Yu-Ho ;
Stanciu, Lia ;
Andreescu, Silvana .
BIOSENSORS & BIOELECTRONICS, 2010, 26 (01) :43-49
[3]   Electrocatalytic applications of a sol-gel derived cobalt phthalocyanine-dispersed carbon-ceramic electrode [J].
Arguello, Jacqueline ;
Magosso, Herica A. ;
Landers, Richard ;
Gushikem, Yoshitaka .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 617 (01) :45-52
[4]   Following the Biocatalytic Activities of Glucose Oxidase by Electrochemically Cross-Linked Enzyme-Pt Nanoparticles Composite Electrodes [J].
Bahshi, Lily ;
Frasconi, Marco ;
Tel-Vered, Ran ;
Yehezkeli, Omer ;
Willner, Itamar .
ANALYTICAL CHEMISTRY, 2008, 80 (21) :8253-8259
[5]   The determination of cysteine at Bi-powder carbon paste electrodes by cathodic stripping voltammetry [J].
Baldrianova, L. ;
Agrafiotou, P. ;
Svancara, I. ;
Vytras, K. ;
Sotiropouios, S. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (06) :918-921
[6]  
Bard A.J., 2001, Electrochemical Methods: Fundamental and Applications, V2nd, P471
[7]  
Bard AllenJ., 2001, Electrochemical Methods: Fundamentals and Applications, V2nd, P156
[8]   Voltammetric studies of the interaction of rutin with DNA and its analytical applications on the MWNTs-COOH/Fe3O4 modified electrode [J].
Bian, Chun-Li ;
Zeng, Qing-Xiang ;
Yang, Li-Jun ;
Xiong, Hua-Yu ;
Zhang, Xiu-Hua ;
Wang, Sheng-Fu .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (02) :615-620
[9]   Graphene supported electrocatalysts for methanol oxidation [J].
Bong, Sungyool ;
Kim, Yang-Rae ;
Kim, In ;
Woo, Seunghee ;
Uhm, Sunghyun ;
Lee, Jaeyoung ;
Kim, Hasuck .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :129-131
[10]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649