Comprehensive Review on Graphene Oxide for Use in Drug Delivery System

被引:117
作者
Daniyal, Muhammad [1 ]
Liu, Bin [2 ]
Wang, Wei [1 ]
机构
[1] Hunan Univ Chinese Med, TCM & Ethnomed Innovat & Dev Int Lab, Innovat Mat Med Res Inst, Sch Pharm, Changsha 410208, Hunan, Peoples R China
[2] Hunan Univ, Coll Biol, Hunan Prov Key Lab Plant Funct Genom & Dev Regula, State Key Lab, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; graphene oxide; nano-medicine; drug delivery system; graphene DDS; highly oriented pyrolytic graphite (HOPG); PERFORMANCE ANODE MATERIALS; BORON-NITRIDE NANOSHEETS; FUNCTIONALIZED GRAPHENE; CARBON NANOTUBES; NANO-GRAPHENE; GRAPHITE OXIDE; CONTROLLED-RELEASE; THERMAL REDUCTION; TARGETED DELIVERY; CHEMICAL ROUTE;
D O I
10.2174/13816128256661902011296290
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Motivated by the accomplishment of carbon nanotubes (CNTs), graphene and graphene oxide (GO) has been widely investigated in the previous studies as an innovative medication nanocarrier for the loading of a variety of therapeutics as well as anti-cancer medications, poor dissolvable medications, antibiotics, antibodies, peptides, DNA, RNA and genes. Graphene provides the ultra-high drug-loading efficiency due to the wide surface area. Graphene and graphene oxide have been widely investigated for biomedical applications due to their exceptional qualities: two-dimensional planar structure, wide surface area, chemical and mechanical constancy, sublime conductivity and excellent biocompatibility. Due to these unique qualities, GO applications provide advanced drug transports frameworks and transports of a broad range of therapeutics. In this review, we discussed the latest advances and improvements in the uses of graphene and GO for drug transport and nanomedicine. Initially, we have described what is graphene and graphene oxide. After that, we discussed the qualities of GO as a drug carrier, utilization of GO in drug transport applications, targeted drug transport, transport of anticancer medications, chemical control medicine releasee, co-transport of different medications, comparison of GO with CNTs, nano-graphene for drug transport and at last, we have discussed the graphene toxicity. Finally, we draw a conclusion of current expansion and the potential outlook for the future.
引用
收藏
页码:3665 / 3685
页数:21
相关论文
共 194 条
[1]   Effect of disorder on transport in graphene [J].
Aleiner, I. L. ;
Efetov, K. B. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   A pH-sensitive graphene oxide composite hydrogel [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2010, 46 (14) :2376-2378
[4]   Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes [J].
Banks, CE ;
Crossley, A ;
Salter, C ;
Wilkins, SJ ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (16) :2533-2537
[5]   Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery [J].
Bao, Hongqian ;
Pan, Yongzheng ;
Ping, Yuan ;
Sahoo, Nanda Gopal ;
Wu, Tongfei ;
Li, Lin ;
Li, Jun ;
Gan, Leong Huat .
SMALL, 2011, 7 (11) :1569-1578
[6]   Recent developments on graphene and graphene oxide based solid state gas sensors [J].
Basu, S. ;
Bhattacharyya, P. .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 173 :1-21
[7]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[8]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[9]   Applications of carbon nanotubes in drug delivery [J].
Bianco, A ;
Kostarelos, K ;
Prato, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (06) :674-679
[10]  
Brodie B. C., 1859, Royal Society, V149, P249, DOI [10.1098/rstl.1859.0013, DOI 10.1098/RSTL.1859.0013]