Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition

被引:244
作者
Livi, L. F. [1 ,5 ]
Cappellini, G. [2 ,5 ]
Diem, M. [3 ,4 ]
Franchi, L. [2 ]
Clivati, C. [4 ]
Frittelli, M. [4 ]
Levi, F. [4 ]
Calonico, D. [4 ]
Catani, J. [1 ,5 ,6 ]
Inguscio, M. [1 ,2 ,5 ]
Fallani, L. [1 ,2 ,5 ,6 ]
机构
[1] LENS European Lab Nonlinear Spect, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, Dept Phys & Astron, I-50019 Sesto Fiorentino, Italy
[3] Univ Hamburg, ILP Inst Laserphys, D-20355 Hamburg, Germany
[4] INRIM Ist Nazl Ric Metrol, I-10135 Turin, Italy
[5] INO CNR Ist Nazl Ott CNR, Sez Sesto Fiorentino, I-50019 Sesto Fiorentino, Italy
[6] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
关键词
EDGE STATES; ATOMS; REALIZATION; FERMIONS; GASES;
D O I
10.1103/PhysRevLett.117.220401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron 173Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered fermionic ladders with synthetic magnetic flux in an experimental configuration that has allowed us to achieve uniform fluxes on a lattice with minimal requirements and unprecedented tunability. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Chiral Raman coupling for spin-orbit coupling in ultracold atomic gases [J].
Shan, Biao ;
Huang, Lianghui ;
Zhao, Yuhang ;
Bian, Guoqi ;
Wang, Pengjun ;
Han, Wei ;
Zhang, Jing .
PHYSICAL REVIEW A, 2025, 111 (02)
[42]   Spin-exchange-induced spin-orbit coupling in a superfluid mixture [J].
Chen, Li ;
Zhu, Chuanzhou ;
Zhang, Yunbo ;
Pu, Han .
PHYSICAL REVIEW A, 2018, 97 (03)
[43]   The spectroscopic and transition properties of ZnHe: MRCI plus Q study including spin-orbit coupling [J].
Li, Lulu ;
Li, Chao ;
Yan, Bing .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 297
[44]   Three-dimensional quaternionic condensations, Hopf invariants, and skyrmion lattices with synthetic spin-orbit coupling [J].
Li, Yi ;
Zhou, Xiangfa ;
Wu, Congjun .
PHYSICAL REVIEW A, 2016, 93 (03)
[45]   Recent advances in spin-orbit coupled quantum gases [J].
Zhang, Shanchao ;
Jo, Gyu-Boong .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 128 :75-86
[46]   Development of spin-orbit coupling for stochastic configuration interaction techniques [J].
Murphy, Paul ;
Coe, Jeremy P. ;
Paterson, Martin J. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (06) :319-327
[47]   Influence of spin-orbit coupling on the magnetic dipole term Tα [J].
Sipr, O. ;
Minar, J. ;
Ebert, H. .
PHYSICAL REVIEW B, 2016, 94 (14)
[48]   Algebraic diagrammatic construction for the polarization propagator with spin-orbit coupling [J].
Krauter, Caroline M. ;
Schimmelpfennig, Bernd ;
Pernpointner, Markus ;
Dreuw, Andreas .
CHEMICAL PHYSICS, 2017, 482 :286-293
[49]   Y-Shaped Spin Filter in Graphene with Rashba Spin-Orbit Coupling [J].
Liu, Jun-Feng ;
Chan, Kwok Sum .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (07)
[50]   Topological phase transition in anisotropic square-octagon lattice with spin-orbit coupling and exchange field [J].
Yang, Yuan ;
Yang, Jian ;
Li, Xiaobing ;
Zhao, Yue .
PHYSICS LETTERS A, 2018, 382 (10) :723-728