Integration over the quantum diagonal subgroup and associated Fourier-like algebras

被引:8
作者
Franz, Uwe [1 ]
Lee, Hun Hee [2 ]
Skalski, Adam [3 ]
机构
[1] Univ Franche Comte, Dept Math Besancon, 16,Route Gray, F-25030 Besancon, France
[2] Seoul Natl Univ, Dept Math Sci & Res, Inst Math, Gwanak Ro 1, Seoul 08826, South Korea
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
基金
新加坡国家研究基金会;
关键词
Compact quantum group; Fourier algebra; diagonal subgroup; operator weak amenability; IDEMPOTENT STATES; AMENABILITY; SYMMETRIES;
D O I
10.1142/S0129167X16500737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By analogy with the classical construction due to Forrest, Samei and Spronk, we associate to every compact quantum group G, a completely contractive Banach algebra A(Delta) (G), which can be viewed as a deformed Fourier algebra of G. To motivate the construction, we first analyze in detail the quantum version of the integration over the diagonal subgroup, showing that although the quantum diagonal subgroups in fact never exist, as noted earlier by Kasprzak and Soltan, the corresponding integration represented by a certain idempotent state on C(G) makes sense as long as G is of Kac type. Finally, we analyze as an explicit example the algebras A(Delta) (O-N(+)), N >= 2, associated to Wang's free orthogonal groups, and show that they are not operator weakly amenable.
引用
收藏
页数:37
相关论文
共 31 条
[1]  
[Anonymous], 1964, Bull. Soc. Math. France, DOI DOI 10.24033/BSMF.1607
[2]  
[Anonymous], 1995, SYMETRIES QUANTIQUES
[3]  
Banica T, 1996, CR ACAD SCI I-MATH, V322, P241
[4]  
Bédos E, 2001, J GEOM PHYS, V40, P130, DOI 10.1016/S0393-0440(01)00024-9
[5]   Quantum group of automorphisms of a finite quantum group [J].
Bhowmick, Jyotishman ;
Skalski, Adam ;
Soltan, Piotr M. .
JOURNAL OF ALGEBRA, 2015, 423 :514-537
[6]   Approximation properties for free orthogonal and free unitary quantum groups [J].
Brannan, Michael .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 :223-251
[7]   Operator biflatness of the L1-algebras of compact quantum groups [J].
Caspers, Martijn ;
Lee, Hun Hee ;
Ricard, Eric .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 700 :235-244
[8]   Symmetries of Levy processes on compact quantum groups, their Markov semigroups and potential theory [J].
Cipriani, Fabio ;
Franz, Uwe ;
Kula, Anna .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) :2789-2844
[9]  
Dales H. G., 2000, London Mathematical Soci- ety Monographs New Series, V24
[10]   COMPLETELY POSITIVE MULTIPLIERS OF QUANTUM GROUPS [J].
Daws, Matthew .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (12)