A quantum-enhanced prototype gravitational-wave detector

被引:305
作者
Goda, K. [1 ]
Miyakawa, O. [2 ]
Mikhailov, E. E. [3 ]
Saraf, S. [4 ]
Adhikari, R. [2 ]
McKenzie, K. [5 ]
Ward, R. [2 ]
Vass, S. [2 ]
Weinstein, A. J. [2 ]
Mavalvala, N. [1 ]
机构
[1] MIT, LIGO Lab, Cambridge, MA 02139 USA
[2] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[3] Coll William & Mary, Williamsburg, VA 23187 USA
[4] Rochester Inst Technol, Rochester, NY 14623 USA
[5] Australian Natl Univ, Ctr Gravitat Phys, Canberra, ACT 0200, Australia
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys920
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum nature of the electromagnetic field imposes a fundamental limit on the sensitivity of optical precision measurements such as spectroscopy, microscopy and interferometry(1). The so-called quantum limit is set by the zero-point fluctuations of the electromagnetic field, which constrain the precision with which optical signals can be measured(2-4). In the world of precision measurement, laser-interferometric gravitational-wave detectors(4-6) are the most sensitive position meters ever operated, capable of measuring distance changes of the order of 10(-18) mr.m.s. over kilometre separations caused by gravitational waves from astronomical sources(7). The sensitivity of currently operational and future gravitational-wave detectors is limited by quantum optical noise(6). Here, we demonstrate a 44% improvement in displacement sensitivity of a prototype gravitational-wave detector with suspended quasi-free mirrors at frequencies where the sensitivity is shot-noise-limited, by injecting a squeezed state of light(1-3). This demonstration is a critical step towards implementation of squeezing-enhancement in large-scale gravitational-wave detectors.
引用
收藏
页码:472 / 476
页数:5
相关论文
共 29 条
[1]  
ABBOTT B, 2007, LASER INTERFEROMETER
[2]  
ABBOTT B, 2001, LIGOT010115R
[3]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[4]   Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy [J].
Ando, M ;
Arai, K ;
Takahashi, R ;
Heinzel, G ;
Kawamura, S ;
Tatsumi, D ;
Kanda, N ;
Tagoshi, H ;
Araya, A ;
Asada, H ;
Aso, Y ;
Barton, MA ;
Fujimoto, MK ;
Fukushima, M ;
Futamase, T ;
Hayama, K ;
Horikoshi, G ;
Ishizuka, H ;
Kamikubota, N ;
Kawabe, K ;
Kawashima, N ;
Kobayashi, Y ;
Kojima, Y ;
Kondo, K ;
Kozai, Y ;
Kuroda, K ;
Matsuda, N ;
Mio, N ;
Miura, K ;
Miyakawa, O ;
Miyama, SM ;
Miyoki, S ;
Moriwaki, S ;
Musha, M ;
Nagano, S ;
Nakagawa, K ;
Nakamura, T ;
Nakao, K ;
Numata, K ;
Ogawa, Y ;
Ohashi, M ;
Ohishi, N ;
Okutomi, S ;
Oohara, K ;
Otsuka, S ;
Saito, Y ;
Sasaki, M ;
Sato, S ;
Sekiya, A ;
Shibata, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3950-3954
[5]  
[Anonymous], 1987, 300 YEARS GRAVITATIO
[6]  
[Anonymous], CLASS QUANTUM GRAV
[7]   Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit [J].
Boto, AN ;
Kok, P ;
Abrams, DS ;
Braunstein, SL ;
Williams, CP ;
Dowling, JP .
PHYSICAL REVIEW LETTERS, 2000, 85 (13) :2733-2736
[8]   Measurement of the quantum states of squeezed light [J].
Breitenbach, G ;
Schiller, S ;
Mlynek, J .
NATURE, 1997, 387 (6632) :471-475
[9]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[10]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105