Adaptive Multivariable Integral TSMC of a Hypersonic Gliding Vehicle With Actuator Faults and Model Uncertainties

被引:65
作者
Li, Peng [1 ,2 ]
Yu, Xiang [3 ]
Zhang, Youmin [3 ]
Peng, Xiaoyan [4 ]
机构
[1] Natl Univ Def Technol, Coll Mechatron Engn & Automat, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[3] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ H3G 1M8, Canada
[4] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Actuator faults; composite-loop design; control-oriented model; fault-tolerant control (FTC); hypersonic gliding vehicle (HGV); multivariable integral terminal sliding-mode control (TSMC); TOLERANT CONTROL; FLIGHT CONTROL; CONTROL DESIGN; TRACKING; DYNAMICS;
D O I
10.1109/TMECH.2017.2756345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a fault-tolerant control (FTC) strategy for a hypersonic gliding vehicle (HGV) subject to actuator malfunctions and model uncertainties. The control-oriented model of the HGV is established according to the HGV kinematic and aerodynamic models. A composite-loop design for HGV FTC under actuator faults is subsequently developed, where newly developed multivariable integral terminal sliding-mode control (TSMC) and adaptive techniques are integrated. The multivariable integral TSMC is capable of ensuring the finite-time stability of the closed-loop system in the presence of actuator malfunctions and model uncertainties, while the adaptive laws are employed to tune the control parameters in response to the HGV status. Simulation studies based on a six-degree-of-freedom nonlinear model of the HGV are illustrated to highlight the effectiveness of the developed FTC scheme.
引用
收藏
页码:2723 / 2735
页数:13
相关论文
共 44 条
[1]   Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme [J].
Alwi, Halim ;
Edwards, Christopher .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (03) :499-510
[2]   Approximate Back-Stepping Fault-Tolerant Control of the Flexible Air-Breathing Hypersonic Vehicle [J].
An, Hao ;
Liu, Jianxing ;
Wang, Changhong ;
Wu, Ligang .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (03) :1680-1691
[3]   L1 Adaptive Control Augmentation for the Longitudinal Dynamics of a Hypersonic Glider [J].
Banerjee, Sanchito ;
Wang, Zhongjie ;
Baur, Bernhard ;
Holzapfel, Florian ;
Che, Jiaxing ;
Cao, Chengyu .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (02) :275-291
[4]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[5]  
Cao T, 2016, CHIN CONT DECIS CONF, P5951, DOI 10.1109/CCDC.2016.7532062
[6]  
Edwards C, 2014, P AMER CONTR CONF, P4524, DOI 10.1109/ACC.2014.6859214
[7]   Adaptive dual-layer super-twisting control and observation [J].
Edwards, Christopher ;
Shtessel, Yuri .
INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (09) :1759-1766
[8]   Adaptive continuous higher order sliding mode control [J].
Edwards, Christopher ;
Shtessel, Yuri B. .
AUTOMATICA, 2016, 65 :183-190
[9]   Non-singular terminal sliding mode control of rigid manipulators [J].
Feng, Y ;
Yu, XH ;
Man, ZH .
AUTOMATICA, 2002, 38 (12) :2159-2167
[10]   On nonsingular terminal sliding-mode control of nonlinear systems [J].
Feng, Yong ;
Yu, Xinghuo ;
Han, Fengling .
AUTOMATICA, 2013, 49 (06) :1715-1722