Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network

被引:131
作者
Guo, Yu [1 ]
Yang, Dongfang [2 ]
Zhang, Yang [3 ]
Wang, Licheng [4 ]
Wang, Kai [1 ]
机构
[1] Qingdao Univ, Sch Elect Engn, Weihai Innovat Res Inst, Qingdao 266000, Peoples R China
[2] Xian Traff Engn Inst, Xian 710300, Peoples R China
[3] State Power Investment Corp, Strateg Res Inst, Beijing, Peoples R China
[4] Zhejiang Univ Technol, Sch Informat Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of health; Data-driven; SSA-Elman; MODEL;
D O I
10.1186/s41601-022-00261-y
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The estimation of state of health (SOH) of a lithium-ion battery (LIB) is of great significance to system safety and economic development. This paper proposes a SOH estimation method based on the SSA-Elman model for the first time. To improve the correlation rates between features and battery capacity, a method combining median absolute deviation filtering and Savitzky-Golay filtering is proposed to process the data. Based on the aging characteristics of the LIB, five features with correlation rates above 0.99 after data processing are then proposed. Addressing the defects of the Elman model, the sparrow search algorithm (SSA) is used to optimize the network parameters. In addition, a data incremental update mechanism is added to improve the generalization of the SSA-Elman model. Finally, the performance of the proposed model is verified based on NASA dataset, and the outputs of the Elman, LSTM and SSA-Elman models are compared. The results show that the proposed method can accurately estimate the SOH, with the root mean square error (RMSE) being as low as 0.0024 and the mean absolute percentage error (MAPE) being as low as 0.25%. In addition, RMSE does not exceed 0.0224 and MAPE does not exceed 2.21% in high temperature and low temperature verifications.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Novel Feature Engineering-Based SOH Estimation Method for Lithium-Ion Battery with Downgraded Laboratory Data
    Wang, Jinyu
    Zhang, Caiping
    Meng, Xiangfeng
    Zhang, Linjing
    Li, Xu
    Zhang, Weige
    BATTERIES-BASEL, 2024, 10 (04):
  • [42] Edge-cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer
    Chen, Yuan
    Huang, Xiaohe
    He, Yigang
    Zhang, Siyuan
    Cai, Yujing
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [43] SOC and SOH Estimation for a Lithium-Ion Battery Using a Novel Adaptive Observer Based Approach
    Gholizadeh, Mehdi
    Yazdizadeh, Alireza
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 215 - 220
  • [44] A SOH Estimation Study on Lithium-Ion Battery based on Incremental Capacity and Differential Voltage Analysis
    Park, Seong Yun
    Lee, Pyeong Yeon
    Yoo, Ki Soo
    Kim, Jong Hoon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2021, 45 (03) : 259 - 266
  • [45] Lithium-Ion Battery SOH Estimation Method Based on Multi-Feature and CNN-BiLSTM-MHA
    Zhou, Yujie
    Zhang, Chaolong
    Zhang, Xulong
    Zhou, Ziheng
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (07):
  • [46] Enhanced Lithium-Ion Battery SOH Estimation Using Bayesian-Optimized CNN Deep Learning Approach
    Huang, Xiaorong
    Wei, Jionghui
    Huang, Jieming
    Zhang, Qingbo
    Zhong, Rongfu
    Lai, Rijing
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (11)
  • [47] A new method for lithium-ion battery's SOH estimation and RUL prediction
    Zhang, Siwen
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2693 - 2697
  • [48] Explainability-driven model improvement for SOH estimation of lithium-ion battery
    Wang, Fujin
    Zhao, Zhibin
    Zhai, Zhi
    Shang, Zuogang
    Yan, Ruqiang
    Chen, Xuefeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 232
  • [49] State of health estimation for lithium-ion batteries based on Savitzky Golay filter and evolving Elman neural network
    Zheng, Di
    Wei, Rongjian
    Guo, Xifeng
    Ning, Yi
    Zhang, Ye
    IONICS, 2025, 31 (02) : 1423 - 1436
  • [50] A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime
    Qian, Cheng
    Xu, Binghui
    Xia, Quan
    Ren, Yi
    Yang, Dezhen
    Wang, Zili
    MATERIALS, 2022, 15 (17)