Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network

被引:131
作者
Guo, Yu [1 ]
Yang, Dongfang [2 ]
Zhang, Yang [3 ]
Wang, Licheng [4 ]
Wang, Kai [1 ]
机构
[1] Qingdao Univ, Sch Elect Engn, Weihai Innovat Res Inst, Qingdao 266000, Peoples R China
[2] Xian Traff Engn Inst, Xian 710300, Peoples R China
[3] State Power Investment Corp, Strateg Res Inst, Beijing, Peoples R China
[4] Zhejiang Univ Technol, Sch Informat Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of health; Data-driven; SSA-Elman; MODEL;
D O I
10.1186/s41601-022-00261-y
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The estimation of state of health (SOH) of a lithium-ion battery (LIB) is of great significance to system safety and economic development. This paper proposes a SOH estimation method based on the SSA-Elman model for the first time. To improve the correlation rates between features and battery capacity, a method combining median absolute deviation filtering and Savitzky-Golay filtering is proposed to process the data. Based on the aging characteristics of the LIB, five features with correlation rates above 0.99 after data processing are then proposed. Addressing the defects of the Elman model, the sparrow search algorithm (SSA) is used to optimize the network parameters. In addition, a data incremental update mechanism is added to improve the generalization of the SSA-Elman model. Finally, the performance of the proposed model is verified based on NASA dataset, and the outputs of the Elman, LSTM and SSA-Elman models are compared. The results show that the proposed method can accurately estimate the SOH, with the root mean square error (RMSE) being as low as 0.0024 and the mean absolute percentage error (MAPE) being as low as 0.25%. In addition, RMSE does not exceed 0.0224 and MAPE does not exceed 2.21% in high temperature and low temperature verifications.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Lithium-ion Battery SOH Estimation with Varying Amount of Battery Operation Data
    Li, Xingjun
    Yu, Dan
    Vilsen, Soren Byg
    Store, Daniel-Ioan
    2023 25TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, EPE'23 ECCE EUROPE, 2023,
  • [22] SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
    Wu, Tiezhou
    Liu, Sizhe
    Wang, Zhikun
    Huang, Yiheng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 307 - 317
  • [23] A Method for Estimating the SOH of Lithium-Ion Batteries Based on Graph Perceptual Neural Network
    Chen, Kang
    Wang, Dandan
    Guo, Wenwen
    BATTERIES-BASEL, 2024, 10 (09):
  • [24] Method of Predicting SOH and RUL of Lithium-Ion Battery Based on the Combination of LSTM and GPR
    Zhao, Jiahui
    Zhu, Yong
    Zhang, Bin
    Liu, Mingyi
    Wang, Jianxing
    Liu, Chenghao
    Zhang, Yuanyuan
    SUSTAINABILITY, 2022, 14 (19)
  • [25] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    ENERGY, 2021, 236
  • [26] An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman neural network
    Li, Wenhua
    Jiao, Zhipeng
    Du, Le
    Fan, Wenyi
    Zhu, Yazun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 12270 - 12276
  • [27] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [28] A novel hybrid neural network-based SOH and RUL estimation method for lithium-ion batteries
    Chen, Baoliang
    Liu, Yonggui
    Xiao, Bin
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [29] Lithium-ion Battery SOH Estimation and Fault Diagnosis with Missing Data
    Yang, Ang
    Wang, Yu
    Tsui, Kowk Leung
    Zi, Yanyang
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019,
  • [30] Lithium-ion battery SOH estimation method based on multi-feature and CNN-KAN
    Zhang, Zhao
    Liu, Xin
    Zhang, Runrun
    Liu, Xu Ming
    Chen, Shi
    Sun, Zhexuan
    Jiang, Heng
    Frontiers in Energy Research, 2024, 12