Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction

被引:128
作者
Bai, Wenjia [1 ,2 ]
Chen, Chen [3 ]
Tarroni, Giacomo [3 ]
Duan, Jinming [3 ,4 ]
Guitton, Florian [1 ]
Petersen, Steffen E. [5 ]
Guo, Yike [1 ]
Matthews, Paul M. [2 ,6 ]
Rueckert, Daniel [3 ]
机构
[1] Imperial Coll London, Data Sci Inst, London, England
[2] Imperial Coll London, Dept Med, London, England
[3] Imperial Coll London, Dept Comp, BioMedIA, London, England
[4] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[5] Queen Mary Univ London, NIHR Barts BRC, London, England
[6] Imperial Coll London, UK Dementia Res Inst, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-32245-8_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manually annotated data, which is expensive to acquire and limited by the available resources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net.
引用
收藏
页码:541 / 549
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2017, ICCV
[2]  
[Anonymous], 2016, CVPR
[3]  
[Anonymous], 2018, INTERCONF LEARN REPR
[4]  
[Anonymous], 2016, ECCV
[5]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[6]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[7]  
Doersch C., 2015, P INT C COMP VIS ICC
[8]  
Jamaludin A., 2017, MICCAI DLMIA WORKSH
[9]  
Ronneberger P., 2015, P MED IM COMP COMP A, P234, DOI DOI 10.1007/978-3-319-24574-4_28
[10]   Exploiting the potential of unlabeled endoscopic video data with self-supervised learning [J].
Ross, Tobias ;
Zimmerer, David ;
Vemuri, Anant ;
Isensee, Fabian ;
Wiesenfarth, Manuel ;
Bodenstedt, Sebastian ;
Both, Fabian ;
Kessler, Philip ;
Wagner, Martin ;
Mueller, Beat ;
Kenngott, Hannes ;
Speidel, Stefanie ;
Kopp-Schneider, Annette ;
Maier-Hein, Klaus ;
Maier-Hein, Lena .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (06) :925-933