Translating regular expressions into small ε-free nondeterministic finite automata

被引:57
作者
Hromkovic, J [1 ]
Seibert, S
Wilke, T
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Informat 1, D-52056 Aachen, Germany
[2] Univ Kiel, Inst Informat & Prakt Math, D-24098 Kiel, Germany
关键词
regular expressions; finite automata;
D O I
10.1006/jcss.2001.1748
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that every regular expression of size n can be converted into an equivalent nondeterministic epsilon -free finite automaton (NFA) with C(n log n(2) ) transitions in time C(n(2) log n). The best previously known conversions result in NFAs of worst-case size Theta (n(2)). We complement our result by proving an almost matching lower bound. We exhibit a sequence of regular expressions of size C(n) and show the number of transitions requited in equivalent NFAs is Omega (n log n). This also proves there does not exist a linear-size conversion From regular expressions to NFAs. (C) 2001 Academic Press.
引用
收藏
页码:565 / 588
页数:24
相关论文
共 49 条
[31]   Measuring the expressive power of practical regular expressions by classical stacking automata models [J].
Nogami, Taisei ;
Terauchi, Tachio .
INFORMATION AND COMPUTATION, 2025, 305
[32]   Regular expressions for muller context-free languages [J].
Gelle K. ;
Ivan S. .
Acta Cybernetica, 2017, 23 (01) :349-369
[33]   The state minimization problem for nondeterministic finite automata: the parallel implementation of the truncated branch and bound method [J].
Melnikov, Boris ;
Tsyganov, Andrey .
2012 FIFTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP), 2012, :194-201
[34]   Converting nondeterministic two-way automata into small deterministic linear-time machines [J].
Guillon, Bruno ;
Pighizzini, Giovanni ;
Prigioniero, Luca ;
Prusa, Daniel .
INFORMATION AND COMPUTATION, 2022, 289
[35]   Efficient implementation of regular languages using reversed alternating finite automata [J].
Salomaa, K ;
Wu, X ;
Yu, S .
THEORETICAL COMPUTER SCIENCE, 2000, 231 (01) :103-111
[36]   Regular expressions and context-free grammars for picture languages [J].
Matz, O .
STACS 97 - 14TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1997, 1200 :283-294
[37]   Converting nondeterministic automata and context-free grammars into Parikh equivalent one-way and two-way deterministic automata [J].
Lavado, Giovanna J. ;
Pighizzini, Giovanni ;
Seki, Shinnosuke .
INFORMATION AND COMPUTATION, 2013, 228 :1-15
[38]   Union-free regular languages and 1-cycle-free-path-automata [J].
Nagy, B .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (1-2) :183-197
[39]   Simulating finite automata with context-free grammars [J].
Domaratzki, M ;
Pighizzini, G ;
Shallit, J .
INFORMATION PROCESSING LETTERS, 2002, 84 (06) :339-344
[40]   Alternating finite automata and star-free languages [J].
Salomaa, K ;
Yu, S .
THEORETICAL COMPUTER SCIENCE, 2000, 234 (1-2) :167-176