Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling

被引:18
作者
Pereira, Marcelo G. [1 ,2 ]
Dyar, Kenneth A. [1 ,3 ,4 ]
Nogara, Leonardo [1 ,2 ]
Solagna, Francesca [1 ]
Marabita, Manuela [1 ]
Baraldo, Martina [1 ,2 ]
Chemello, Francesco [5 ]
Germinario, Elena [2 ]
Romanello, Vanina [1 ,2 ]
Nolte, Hendrik [6 ]
Blaauw, Bert [1 ,2 ]
机构
[1] Venetian Inst Mol Med, Padua, Italy
[2] Univ Padua, Dept Biomed Sci, Padua, Italy
[3] Helmholtz Diabet Ctr, Inst Diabet & Obes, Mol Endocrinol, Neuherberg, Germany
[4] German Ctr Diabet Res, Neuherberg, Germany
[5] Univ Padua, Dept Biol, Padua, Italy
[6] Univ Cologne, Inst Genet, Cologne Excellence Cluster Cellular Stress Respon, Cologne, Germany
关键词
mTORC1; skeletal muscle; hypertrophy; ribosome biogenesis; immediate early genes; overload; postnatal growth; Akt; SKELETAL-MUSCLE; ACTIVATION; EXPRESSION; PREVENTS; FORCE; DLK1; MASS;
D O I
10.3389/fphys.2017.00968
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL) muscles collected (1) during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2) 24 h or 3 weeks after constitutive activation of AKT, and (3) 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.
引用
收藏
页数:11
相关论文
共 44 条
[21]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[22]   mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin [J].
Kang, Seong A. ;
Pacold, Michael E. ;
Cervantes, Christopher L. ;
Lim, Daniel ;
Lou, Hua Jane ;
Ottina, Kathleen ;
Gray, Nathanael S. ;
Turk, Benjamin E. ;
Yaffe, Michael B. ;
Sabatini, David M. .
SCIENCE, 2013, 341 (6144) :364-+
[23]   Versatile inducible activation system of Akt/PKB signaling pathway in mice [J].
Kroll, J ;
Cobo, P ;
Sato, TN .
GENESIS, 2003, 35 (03) :160-163
[24]   Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression [J].
Lecker, SH ;
Jagoe, RT ;
Gilbert, A ;
Gomes, M ;
Baracos, V ;
Bailey, J ;
Price, SR ;
Mitch, WE ;
Goldberg, AL .
FASEB JOURNAL, 2004, 18 (01) :39-51
[25]   Regulation by FK506 and rapamycin of Ca2+release from the sarcoplasmic reticulum in vascular smooth muscle: the role of FK506 binding proteins and mTOR [J].
MacMillan, D. ;
McCarron, J. G. .
BRITISH JOURNAL OF PHARMACOLOGY, 2009, 158 (04) :1112-1120
[26]   The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism In Vivo [J].
Mammucari, Cristina ;
Gherardi, Gaia ;
Zamparo, Ilaria ;
Raffaello, Anna ;
Boncompagni, Simona ;
Chemello, Francesco ;
Cagnin, Stefano ;
Braga, Alessandra ;
Zanin, Sofia ;
Pallafacchina, Giorgia ;
Zentilin, Lorena ;
Sandri, Marco ;
De Stefani, Diego ;
Protasi, Feliciano ;
Lanfranchi, Gerolamo ;
Rizzuto, Rosario .
CELL REPORTS, 2015, 10 (08) :1269-1279
[27]   AKT/PKB Signaling: Navigating the Network [J].
Manning, Brendan D. ;
Toker, Alex .
CELL, 2017, 169 (03) :381-405
[28]   S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy [J].
Marabita, Manuela ;
Baraldo, Martina ;
Solagna, Francesca ;
Ceelen, Judith Johanna Maria ;
Sartori, Roberta ;
Nolte, Hendrik ;
Nemazanyy, Ivan ;
Pyronnet, Stephane ;
Kruger, Marcus ;
Pende, Mario ;
Blaauw, Bert .
CELL REPORTS, 2016, 17 (02) :501-513
[29]   MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity [J].
Moretti, Irene ;
Ciciliot, Stefano ;
Dyar, Kenneth A. ;
Abraham, Reimar ;
Murgia, Marta ;
Agatea, Lisa ;
Akimoto, Takayuki ;
Bicciato, Silvio ;
Forcato, Mattia ;
Pierre, Philippe ;
Uhlenhaut, N. Henriette ;
Rigby, Peter W. J. ;
Carvajal, Jaime J. ;
Blaauw, Bert ;
Calabria, Elisa ;
Schiaffino, Stefano .
NATURE COMMUNICATIONS, 2016, 7
[30]   Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice [J].
Murach, Kevin A. ;
White, Sarah H. ;
Wen, Yuan ;
Ho, Angel ;
Dupont-Versteegden, Esther E. ;
McCarthy, John J. ;
Peterson, Charlotte A. .
SKELETAL MUSCLE, 2017, 7