Modeling and Solution of Some Mechanical Problems on Lie Groups

被引:19
作者
Engo, K. [1 ]
Marthinsen, A. [2 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7034 Trondheim, Norway
关键词
geometric integration; ordinary differential equations; manifolds; numerical analysis; initial value problems; mechanical engineering;
D O I
10.1023/A:1009701220769
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We apply Munthe-Kaas and Crouch-Grossman methods in the solution of some mechanical problems. These methods are quite new, and they exploit intrinsic properties of the manifolds defined by the mechanical problems, thus ensuring that the numerical solution obey underlying constraints. A brief introduction to the methods is presented, and numerical simulations show some of the properties they possess. We also discuss error estimation and stepsize selection for some of these methods.
引用
收藏
页码:71 / 88
页数:18
相关论文
共 15 条
[1]  
[Anonymous], FDN COMPUTATIONAL MA
[2]  
Arnold V. I., 2013, Mathematical Methods of Classical Mechanics, V60
[3]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[4]   NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS [J].
CROUCH, PE ;
GROSSMAN, R .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :1-33
[5]  
Gustafsson K., 1992, THESIS
[6]  
Hairer Ernst, 1993, Springer Ser. Comput. Math., V8
[7]   IMPROVED NUMERICAL DISSIPATION FOR TIME INTEGRATION ALGORITHMS IN STRUCTURAL DYNAMICS [J].
HILBER, HM ;
HUGHES, TJR ;
TAYLOR, RL .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1977, 5 (03) :283-292
[8]   Simulation of ordinary differential equations on manifolds: Some numerical experiments and verifications [J].
Marthinsen, A ;
MuntheKaas, H ;
Owren, B .
MODELING IDENTIFICATION AND CONTROL, 1997, 18 (01) :75-88
[9]   Runge-Kutta methods on Lie groups [J].
Munthe-Kaas, H .
BIT, 1998, 38 (01) :92-111
[10]  
Munthe-Kaas H, 1997, NA14 U CAMBR DEP ALL