RINGS WHOSE CYCLIC MODULES ARE RADICAL LIFTING MODULES

被引:0
作者
Das, Soumitra [1 ]
Buhphang, Ardeline M. [1 ]
机构
[1] North Eastern Hill Univ, Dept Math, Permanent Campus, Shillong 793022, Meghalaya, India
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2020年 / 45卷 / 02期
关键词
supplemented modules; H-supplemented modules; circle plus-supplemented modules; lifting modules; radical lifting modules; semiperfect rings;
D O I
10.17654/NT045020137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A right R-module M is called a radical lifting if for every submodule N of M, with Rad (M) <= N, there exists a module decomposition M = M-1 circle plus M-2 such that M-1 <= N and N boolean AND M-2 is small in M-2. In this paper, we study sufficient conditions for a direct summand, factor module of a radical lifting module to be radical lifting. Thereafter, we study rings over which every cyclic right R-module is a radical lifting module. Examples are provided to illustrate the necessity and the sufficiency of the conditions in our result. We also provide examples to show that the class of rings all of whose cyclic right modules are radical lifting is not left-right symmetric.
引用
收藏
页码:137 / 155
页数:19
相关论文
共 13 条
[1]  
Anderson F.W., 1992, RINGS CATEGORIES MOD, V13
[2]  
Baba Y, 2009, CLASSICAL ARTINIAN R
[3]  
Clark J, 2006, FRONT MATH, P1
[4]   On ⊕-supplemented modules [J].
Harmanci, A ;
Keskin, D ;
Smith, PF .
ACTA MATHEMATICA HUNGARICA, 1999, 83 (1-2) :161-169
[5]   Rad-Projective δ-Covers [J].
Ibrahim, Yasser ;
Yousif, Mohamed .
NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 :175-188
[6]   RINGS FOR WHICH EVERY CYCLIC MODULE IS QUASI-PROJECTIVE [J].
KOEHLER, A .
MATHEMATISCHE ANNALEN, 1970, 189 (04) :311-&
[7]   H-supplemented duo modules [J].
Kosan, Muhammet Tamer ;
Tutuncu, Derya Keskin .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (06) :965-971
[8]  
Lam T.Y, 1998, GRADUATE TEXTS MATH
[9]  
Mohamed S.H., 1990, London Math. Soc. LNS, V147
[10]   Rings whose cyclics are D3-modules [J].
Nguyen, Xuan Hau ;
Yousif, Mohamed F. ;
Zhou, Yiqiang .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)