A photonic complex perceptron for ultrafast data processing

被引:13
作者
Mancinelli, Mattia [1 ]
Bazzanella, Davide [1 ]
Bettotti, Paolo [1 ]
Pavesi, Lorenzo [1 ]
机构
[1] Univ Trento, Dept Phys, NanoLab, Via Sommar 14, I-38123 Trento, Italy
基金
欧洲研究理事会;
关键词
D O I
10.1038/s41598-022-08087-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In photonic neural network a key building block is the perceptron. Here, we describe and demonstrate a complex-valued photonic perceptron that combines time and space multiplexing in a fully passive silicon photonics integrated circuit to process data in the optical domain. A time dependent input bit sequence is broadcasted into a few delay lines and detected by a photodiode. After detection, the phases are trained by a particle swarm algorithm to solve the given task. Since only the phases of the propagating optical modes are trained, signal attenuation in the perceptron due to amplitude modulation is avoided. The perceptron performs binary pattern recognition and few bit delayed XOR operations up to 16 Gbps (limited by the used electronics) with Bit Error Rates as low as 10(-6).
引用
收藏
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 1957, The Perceptron, a Perceiving and Recognizing Automaton Project Para
[2]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Photonic machine learning implementation for signal recovery in optical communications [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2018, 8
[4]  
Bansal J.C., 2019, Evolutionary and Swarm Intelligence Algorithms
[5]   Do reservoir computers work best at the edge of chaos? [J].
Carroll, T. L. .
CHAOS, 2020, 30 (12)
[6]   All-optical reservoir computing [J].
Duport, Francois ;
Schneider, Bendix ;
Smerieri, Anteo ;
Haelterman, Marc ;
Massar, Serge .
OPTICS EXPRESS, 2012, 20 (20) :22783-22795
[7]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[8]   Machine learning and applications in ultrafast photonics [J].
Genty, Goery ;
Salmela, Lauri ;
Dudley, John M. ;
Brunner, Daniel ;
Kokhanovskiy, Alexey ;
Kobtsev, Sergei ;
Turitsyn, Sergei K. .
NATURE PHOTONICS, 2021, 15 (02) :91-101
[9]   Linear programmable nanophotonic processors [J].
Harris, Nicholas C. ;
Carolan, Jacques ;
Bunandar, Darius ;
Prabhu, Mihika ;
Hochberg, Michael ;
Baehr-Jones, Tom ;
Fanto, Michael L. ;
Smith, A. Matthew ;
Tison, Christopher C. ;
Alsing, Paul M. ;
Englund, Dirk .
OPTICA, 2018, 5 (12) :1623-1631
[10]   Training of photonic neural networks through in situ backpropagation and gradient measurement [J].
Hughes, Tyler W. ;
Minkov, Momchil ;
Shi, Yu ;
Fan, Shanhui .
OPTICA, 2018, 5 (07) :864-871