Design, Construction, and Modeling of a BAUV with Propulsion System Based on a Parallel Mechanism for the Caudal Fin

被引:11
作者
Tehani Aparicio-Garcia, Cristina [1 ]
Naula Duchi, Edisson A. [1 ]
Garza-Castanon, Luis E. [1 ]
Vargas-Martinez, Adriana [1 ]
Martinez-Lopez, J. Israel [1 ]
Minchala-Avila, Luis I. [2 ]
机构
[1] Tecnol Monterrey, Sch Sci & Engn, Eugenio Garza Sada 2501, Monterrey 64849, Mexico
[2] Tecnol Monterrey Guadalajara, Sch Sci & Engn, Gral Ramon Corona 2514, Guadalajara 45138, Mexico
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
关键词
BAUV (biomimetic autonomous underwater vehicle); 3UCU-1S parallel mechanism; caudal fin vector propulsion; vectored thruster; INVERSE DYNAMICS; ROBOTIC FISH; UNDERWATER;
D O I
10.3390/app10072426
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional propulsion systems for autonomous underwater vehicles (AUVs) have several deficiencies, such as the invasion of the aquatic environment through the generation of noise and damage to the ecosystem, higher energy consumption, and a unidirectional thruster vector. The last characteristic constrains the maneuverability of the vehicle. This paper proposes a 3-DOF spherical 3 universal-cylindrical-universal and 1 spherical joint (3UCU-1S) parallel mechanism coupled to an artificial caudal fin to produce a vectored thruster for a biomimetic AUV (BAUV). First, the design and construction of the prototype are described. Then, the kinematics and dynamics analysis of the parallel mechanism is presented. Finally, a motion study shows the types of movements that can be achieved with the mechanism to perform flapping of the caudal fin in different directions.
引用
收藏
页数:15
相关论文
共 26 条
  • [1] FILOSE for Svenning A Flow Sensing Bioinspired Robot
    Akanyeti, Otar
    Brown, Jennifer C.
    Chambers, Lily D.
    el Daou, Hadi
    Fiazza, Maria-Camilla
    Fiorini, Paolo
    Jezov, Jaas
    Jung, David S.
    Kruusmaa, Maarja
    Listak, Madis
    Liszewski, Andrew
    Maud, Jacqueline L.
    Megill, William M.
    Rossi, Lorenzo
    Qualtieri, Antonio
    Rizzi, Francesco
    Salumaee, Taavi
    Toming, Gert
    Venturelli, Roberto
    Visentin, Francesco
    De Vittorio, Massimo
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2014, 21 (03) : 51 - 62
  • [2] A brief taxonomy of autonomous underwater vehicle design literature
    Alam, Khairul
    Ray, Tapabrata
    Anavatti, Sreenatha G.
    [J]. OCEAN ENGINEERING, 2014, 88 : 627 - 630
  • [3] Conceptual design of an AUV equipped with a three degrees of freedom vectored thruster
    Cavallo, E
    Michelini, RC
    Filaretov, VF
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2004, 39 (04) : 365 - 391
  • [4] Chowdhury A. R., 2014, IFAC P, V47, P7258
  • [5] Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle
    Chowdhury, Abhra Roy
    Panda, Sanjib Kumar
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2015, 12
  • [6] Fossen T. I, 2011, Mathematical Models for Control of Aircraft and Satellites, V2nd
  • [7] Autonomous Underwater Vehicles: Localization, Navigation, and Communication for Collaborative Missions
    Gonzalez-Garcia, Josue
    Gomez-Espinosa, Alfonso
    Cuan-Urquizo, Enrique
    Govinda Garcia-Valdovinos, Luis
    Salgado-Jimenez, Tomas
    Escobedo Cabello, Jesus Arturo
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [8] Hu YH, 2014, IEEE INT CONF ROBOT, P813, DOI 10.1109/ICRA.2014.6906948
  • [9] Exploration of underwater life with an acoustically controlled soft robotic fish
    Katzschmann, Robert K.
    DelPreto, Joseph
    MacCurdy, Robert
    Rus, Daniela
    [J]. SCIENCE ROBOTICS, 2018, 3 (16)
  • [10] Khalil W, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, P817, DOI 10.1109/ROBOT.2002.1013458