A note on the zeta function of a graph

被引:47
作者
Northshield, S [1 ]
机构
[1] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA
关键词
D O I
10.1006/jctb.1998.1861
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The number of spanning trees in a finite graph is first expressed as the derivative (at 1) of a determinant and then in terms of a zeta function. This generalizes a result of Hashimoto to non-regular graphs. (C) 1998 Academic Press.
引用
收藏
页码:408 / 410
页数:3
相关论文
共 4 条
[1]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[2]  
Hashimoto K., 1989, ADV STUD PURE MATH, V15, P211, DOI DOI 10.1016/B978-0-12-330580-0.50015-X
[3]  
NORTHSHIELD S, IMA PREPRINT SERIES, V1459
[4]   Zeta functions of finite graphs and coverings [J].
Stark, HM ;
Terras, AA .
ADVANCES IN MATHEMATICS, 1996, 121 (01) :124-165