BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets

被引:317
作者
Vos de Wael, Reinder [1 ]
Benkarim, Oualid [1 ]
Paquola, Casey [1 ]
Lariviere, Sara [1 ]
Royer, Jessica [1 ]
Tavakol, Shahin [1 ]
Xu, Ting [1 ,2 ]
Hong, Seok-Jun [1 ,2 ]
Langs, Georg [3 ]
Valk, Sofie [4 ]
Misic, Bratislav [1 ]
Milham, Michael [2 ]
Margulies, Daniel [5 ]
Smallwood, Jonathan [6 ]
Bernhardt, Boris C. [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst & Hosp, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Child Mind Inst, Ctr Developing Brain, New York, NY USA
[3] Med Univ Vienna, Vienna, Austria
[4] Heinrich Heine Univ Duesseldorf, Forschungszentrum Juelich, Inst Syst Neurosci 7, Inst Neurosci & Med, Julich, Germany
[5] CNRS UMR 7225, Inserm U 1127, UPMC UMRS 1127, Frontlab,Inst Cerveau & Moelle Epiniere, Paris, France
[6] Univ York, Dept Psychol, Heslington, England
基金
加拿大健康研究院; 欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
HUMAN CEREBRAL-CORTEX; DEFAULT-MODE NETWORK; CONNECTIVITY; PARCELLATION; REGIONS;
D O I
10.1038/s42003-020-0794-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vos de Wael et al. developed an open source tool called BrainSpace to quantify cortical gradients using 3 structural or functional imaging data. Their toolbox enables gradient identification, comparison, 4 visualization, and association with other brain features. Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.
引用
收藏
页数:10
相关论文
共 61 条
[1]   On testing for spatial correspondence between maps of human brain structure and function [J].
Alexander-Bloch, Aaron F. ;
Shou, Haochang ;
Liu, Siyuan ;
Satterthwaite, Theodore D. ;
Glahn, David C. ;
Shinohara, Russell T. ;
Vandekar, Simon N. ;
Raznahan, Armin .
NEUROIMAGE, 2018, 178 :540-551
[2]   A graded tractographic parcellation of the temporal lobe [J].
Bajada, Claude J. ;
Jackson, Rebecca L. ;
Haroon, Hamied A. ;
Azadbakht, Hojjatollah ;
Parker, Geoff J. M. ;
Ralph, Matthew A. Lambon ;
Cloutman, Lauren L. .
NEUROIMAGE, 2017, 155 :503-512
[3]  
Blaser R, 2016, J MACH LEARN RES, V17
[4]  
Brodmann K., 1909, VERGLEICHENDE LOKALI
[5]   Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey [J].
Buckner, Randy L. ;
Margulies, Daniel S. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   The evolution of distributed association networks in the human brain [J].
Buckner, Randy L. ;
Krienen, Fenna M. .
TRENDS IN COGNITIVE SCIENCES, 2013, 17 (12) :648-665
[7]   Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex [J].
Cerliani, Leonardo ;
Thomas, Rajat M. ;
Jbabdi, Saad ;
Siero, Jeroen C. W. ;
Nanetti, Luca ;
Crippa, Alessandro ;
Gazzola, Valeria ;
D'Arceuil, Helen ;
Keysers, Christian .
HUMAN BRAIN MAPPING, 2012, 33 (09) :2005-2034
[8]  
Cliff A D, 1973, SPATIAL AUTOCORRELAT
[9]   Diffusion maps [J].
Coifman, Ronald R. ;
Lafon, Stephane .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :5-30
[10]  
Dart RA, 1934, J ANAT, V69, P3