Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@SiO2 catalyst

被引:43
作者
Han, Bolin [1 ]
Wang, Fagen [1 ,2 ]
Zhang, Linjia [1 ]
Wang, Yan [1 ]
Fan, Weiqiang [1 ]
Xu, Leilei [3 ]
Yu, Hao [4 ]
Li, Zhongcheng [2 ]
机构
[1] Jiangsu Univ, Sch Chem, Chemical Engn, Zhenjiang, Peoples R China
[2] Qingdao Univ Sci, Coll Chem,Shandong Key Lab Biochemical Anal, Mol Engn,Technol, Qingdao, Peoples R China
[3] Nanjing Univ Information Sci, Sch Environm Sci, Engn, Technol, Nanjing, Peoples R China
[4] Shandong Univ Sci, Coll Chemical, Environm Engn, Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Methane reforming; Ni@SiO2 catalyst; Syngas; NI CRYSTAL SIZE; SHELL STRUCTURE; SUPPORTED NI; TEMPERATURE; SILICA; NANOPARTICLES; DESIGN; CO;
D O I
10.1007/s11164-019-04060-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Syngas is a very important intermediate in chemical industry for energy chemicals production through F-T synthesis. Methane steam reforming (MSR) and dry reforming (MDR) reactions are two extensively studied approaches for syngas production. Developing sintering-resistant catalyst for syngas production from the reforming reactions is a hot topic because high-temperature requirement for the reactions always deactivates catalyst due to sintering and carbon deposition. In this study, we synthesized sintering-resistant Ni@SiO2 catalyst for stable performances of MSR and MDR. Characterization of TEM, XRD, etc., revealed that the Ni@SiO2 catalyst could maintain original core-shell structure and preserve Ni nanoparticle size at temperature as high as 1123 K. The excellent sintering resistance was attributed to encapsulation of thermally stable SiO2 nanospheres, which confined Ni nanoparticles migration and thus avoided aggregation. The work provided a potential sintering-resistant catalyst for heterogeneous reactions. Graphic abstract
引用
收藏
页码:1735 / 1748
页数:14
相关论文
共 39 条
  • [1] Catalyst design for dry reforming of methane: Analysis review
    Aramouni, Nicolas Abdel Karim
    Touma, Jad G.
    Abu Tarboush, Belal
    Zeaiter, Joseph
    Ahmad, Mohammad N.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2570 - 2585
  • [2] Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts
    Ay, Hale
    Uner, Deniz
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 179 : 128 - 138
  • [3] Sandwich-Like Silica@Ni@Silica Multicore-Shell Catalyst for the Low-Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation
    Bian, Zhoufeng
    Kawi, Sibudjing
    [J]. CHEMCATCHEM, 2018, 10 (01) : 320 - 328
  • [4] CO2 reforming of CH4
    Bradford, MCJ
    Vannice, MA
    [J]. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01): : 1 - 42
  • [5] Reducing Reaction Temperature, Steam Requirements, and Coke Formation During Methane Steam Reforming Using Electric Fields: A Microkinetic Modeling and Experimental Study
    Che, Fanglin
    Gray, Jake T.
    Ha, Su
    McEwen, Jean-Sabin
    [J]. ACS CATALYSIS, 2017, 7 (10): : 6957 - 6968
  • [6] Synthesis of carbon nanofibers:: effects of Ni crystal size during methane decomposition
    Chen, D
    Christensen, KO
    Ochoa-Fernández, E
    Yu, ZX
    Totdal, B
    Latorre, N
    Monzón, A
    Holmen, A
    [J]. JOURNAL OF CATALYSIS, 2005, 229 (01) : 82 - 96
  • [7] Support effect of Ni/mesoporous silica catalysts for CO2 reforming of CH4
    Chen, Jing
    Piao, Wen Xiang
    Jin, Long Yi
    Li, Zhenghua
    Zhang, Fan
    Kim, Ji Man
    Jin, Mingshi
    [J]. RESEARCH ON CHEMICAL INTERMEDIATES, 2018, 44 (06) : 3867 - 3878
  • [8] Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming
    Christensen, K. O.
    Chen, D.
    Lodeng, R.
    Holmen, A.
    [J]. APPLIED CATALYSIS A-GENERAL, 2006, 314 (01) : 9 - 22
  • [9] Cullity B.D., 1978, ELEMENTS XRAY DIFFRA
  • [10] The physical chemistry and materials science behind sinter-resistant catalysts
    Dai, Yunqian
    Lu, Ping
    Cao, Zhenming
    Campbell, Charles T.
    Xia, Younan
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (12) : 4314 - 4331