Classification of complete Finsler manifolds through a second order differential equation

被引:20
作者
Asanjarani, A. [1 ]
Bidabad, B. [1 ]
机构
[1] Amir Kabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
Finsler; conformal; constant curvature; second order differential equation;
D O I
10.1016/j.difgeo.2007.11.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using a certain second order differential equation, the notion of adapted coordinates on Finsler manifolds is defined and some classifications of complete Finsler manifolds are found. Some examples of Finsler metrics, with positive constant sectional curvature, not necessarily of Randers type nor projectively flat, are found. This work generalizes some results in Riemannian geometry and open up, a vast area of research on Finsler geometry. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:434 / 444
页数:11
相关论文
共 22 条
[11]   Conformal geodesics [J].
Fialkow, Aaron .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 45 (1-3) :443-473
[12]  
FUNK P, 1963, AKAD WISS MN 2, V172, P251
[13]   CONFORMAL DIFFEOMORPHISMS PRESERVING THE RICCI TENSOR [J].
KUHNEL, W ;
RADEMACHER, HB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (09) :2841-2848
[14]  
KUHNEL W, 2001, GEN REL GRAV, V33
[15]  
LEHMANN D, 1964, TOPOLOGIE GEOMETRIE, V6
[16]  
Obata M., 1970, J. Differ. Geom., V4, P311
[17]  
Shen Z., 1996, FINSLER GEOMETRY CON, V196, P83
[18]  
Shen Z., 2001, DIFFERENTIAL GEOMETR
[19]   COMPLETE RIEMANNIAN MANIFOLDS AND SOME VECTOR FIELDS [J].
TASHIRO, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :251-&
[20]  
YANO K, 1940, P IMP AC TOK