Classification of complete Finsler manifolds through a second order differential equation

被引:20
作者
Asanjarani, A. [1 ]
Bidabad, B. [1 ]
机构
[1] Amir Kabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
Finsler; conformal; constant curvature; second order differential equation;
D O I
10.1016/j.difgeo.2007.11.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using a certain second order differential equation, the notion of adapted coordinates on Finsler manifolds is defined and some classifications of complete Finsler manifolds are found. Some examples of Finsler metrics, with positive constant sectional curvature, not necessarily of Randers type nor projectively flat, are found. This work generalizes some results in Riemannian geometry and open up, a vast area of research on Finsler geometry. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:434 / 444
页数:11
相关论文
共 22 条
[1]  
Akbar-Zadeh H, 1988, Acad. R. Belg. Bull. Cl. Sci., V74, P281
[2]  
AKBARZADEH H, 2006, MATH LIB, V68
[3]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[4]   Finsler metrics of constant positive curvature on the Lie group S3 [J].
Bao, D ;
Shen, Z .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :453-467
[5]  
BAO D, 2000, RIEMANNFINSLER GEOME
[6]  
Bejancu A., 2000, Geometry of Pseudo-Finsler Submanifolds
[7]  
BRYANT R., 1997, Selecta Mathematica, V3, P161
[8]  
CATALANO DA, 1999, THESIS ETZ ZURICH
[9]  
Chern SS, 2005, RIEMANN FINSLER GEOM
[10]   CONCIRCULAR TRANSFORMATIONS OF RIEMANNIAN-MANIFOLDS [J].
FERRAND, J .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :163-171