Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation

被引:34
作者
Guha, Partha [1 ]
Olver, Peter J. [2 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700098, W Bengal, India
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
geodesic flow; diffeomorphism; Virasoro orbit; Sobolev norm;
D O I
10.3842/SIGMA.2006.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H-1 metric on the extended Bott-Virasoro and superconformal groups, respectively.
引用
收藏
页数:9
相关论文
共 26 条
[1]  
[Anonymous], REPRESENTATIONS LIE
[2]  
[Anonymous], DMV SEM
[3]   MODULI SPACES OF CURVES AND REPRESENTATION-THEORY [J].
ARBARELLO, E ;
DECONCINI, C ;
KAC, VG ;
PROCESI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (01) :1-36
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[6]  
CHEN M, 2004, NLINSI0501028
[7]   The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group [J].
Devchand, C ;
Schiff, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :260-273
[8]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[9]  
FALQUI G, 1996, NLINSI0505059
[10]   Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation [J].
Fuchssteiner, B .
PHYSICA D, 1996, 95 (3-4) :229-243