Iterative solution for nonlinear impulsive advection-reaction-diffusion equations

被引:10
作者
Hao, Xinan [1 ]
Liu, Lishan [1 ,2 ]
Wu, Yonghong [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Iterative solution; nonlinear advection-reaction-diffusion equations; impulse; TRAVELING-WAVE SOLUTIONS; STABILITY; EXISTENCE; SYSTEMS;
D O I
10.22436/jnsa.009.06.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Through solving equations step by step and by using the generalized Banach fixed point theorem, under simple conditions, the authors present the existence and uniqueness theorem of the iterative solution for nonlinear advection-reaction-diffusion equations with impulsive effects. An explicit iterative scheme for the solution is also derived. The results obtained generalize and improve some known results. (C) 2016 All rights reserved.
引用
收藏
页码:4070 / 4077
页数:8
相关论文
共 50 条
[41]   Iterative Solution for Systems of Nonlinear Two Binary Operator Equations [J].
ZHANG Zhihong LI WenfengDepartment of Computer Science Shangqiu Teachers College Shangqiu China ;
IBasic Science college Yellow River Conservancy Technical Institute Kaifeng China .
数学季刊, 2004, (03) :262-266
[42]   Iterative solution of nonlinear equations with $ \phi $-strongly accretive operators [J].
Z.Q. Liu ;
Y.G. Xu ;
Y.J. Cho .
Archiv der Mathematik, 2001, 77 :508-516
[43]   On the convergence of NSFD schemes for a new class of advection-diffusion-reaction equations [J].
Kayenat, Sheerin ;
Verma, Amit K. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (07) :946-970
[44]   Regularity theory for time-fractional advection-diffusion-reaction equations [J].
McLean, William ;
Mustapha, Kassem ;
Ali, Raed ;
Knio, Omar M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) :947-961
[45]   Moving Fronts in Integro-Parabolic Reaction-Advection-Diffusion Equations [J].
Nefedov, N. N. ;
Nikitin, A. G. ;
Petrova, M. A. ;
Recke, L. .
DIFFERENTIAL EQUATIONS, 2011, 47 (09) :1318-1332
[46]   Minimal Nonnegative Solution of Nonlinear Impulsive Differential Equations on Infinite Interval [J].
Zhang, Xuemei ;
Yang, Xiaozhong ;
Feng, Meiqiang .
BOUNDARY VALUE PROBLEMS, 2011,
[47]   A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains [J].
Sarra, Scott A. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) :9853-9865
[48]   Asymptotically Stable Stationary Solutions of the Reaction-Diffusion-Advection Equation with Discontinuous Reaction and Advection Terms [J].
Levashova, N. T. ;
Nefedov, N. N. ;
Nikolaeva, O. A. .
DIFFERENTIAL EQUATIONS, 2020, 56 (05) :605-620
[49]   Periodicity and positivity of solutions for first-order nonlinear neutral differential equations with iterative terms and impulsive effects [J].
Benhadri, Mimia ;
Caraballo, Tomas .
AFRIKA MATEMATIKA, 2025, 36 (01)
[50]   Stability and bifurcation of a reaction-diffusion-advection model with nonlinear boundary condition [J].
Li, Zhenzhen ;
Dai, Binxiang ;
Zou, Xingfu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 :1-66