Iterative solution for nonlinear impulsive advection-reaction-diffusion equations

被引:10
作者
Hao, Xinan [1 ]
Liu, Lishan [1 ,2 ]
Wu, Yonghong [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Iterative solution; nonlinear advection-reaction-diffusion equations; impulse; TRAVELING-WAVE SOLUTIONS; STABILITY; EXISTENCE; SYSTEMS;
D O I
10.22436/jnsa.009.06.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Through solving equations step by step and by using the generalized Banach fixed point theorem, under simple conditions, the authors present the existence and uniqueness theorem of the iterative solution for nonlinear advection-reaction-diffusion equations with impulsive effects. An explicit iterative scheme for the solution is also derived. The results obtained generalize and improve some known results. (C) 2016 All rights reserved.
引用
收藏
页码:4070 / 4077
页数:8
相关论文
共 50 条
[31]   Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders [J].
Sheng, Wei-Jie ;
Wang, Jia-Bing .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (08)
[32]   Qualitative properties of pulsating fronts for reaction-advection-diffusion equations in periodic excitable media [J].
Bu, Zhen-Hui ;
He, Jun-Feng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 63
[33]   Dynamics of a Reaction-Diffusion-Advection System with Nonlinear Boundary Conditions [J].
Tian, Chenyuan ;
Guo, Shangjiang .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16)
[34]   Bifurcation in a Reaction-Diffusion-Advection Equation with Nonlinear Boundary Conditions [J].
Liu, Kaikai ;
Guo, Shangjiang .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (07)
[35]   A study on iterative learning control for impulsive differential equations [J].
Liu, Shengda ;
Wang, JinRong ;
Wei, Wei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) :4-10
[36]   Stabilization of the Moving Front Solution of the Reaction-Diffusion-Advection Problem [J].
Nefedov, Nikolay ;
Polezhaeva, Elena ;
Levashova, Natalia .
AXIOMS, 2023, 12 (03)
[37]   Solution of chemical master equations for nonlinear stochastic reaction networks [J].
Smadbeck, Patrick ;
Kaznessis, Yiannis N. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 5 :90-95
[38]   Highly efficient NURBS-based isogeometric analysis for coupled nonlinear diffusion-reaction equations with and without advection [J].
Asmouh, Ilham ;
Ostermann, Alexander .
JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 83
[39]   General propagation lattice Boltzmann model for nonlinear advection-diffusion equations [J].
Guo, Xiuya ;
Shi, Baochang ;
Chai, Zhenhua .
PHYSICAL REVIEW E, 2018, 97 (04)
[40]   Periodic solutions in reaction-diffusion equations with time delay [J].
Li, Li .
CHAOS SOLITONS & FRACTALS, 2015, 78 :10-15