Iterative solution for nonlinear impulsive advection-reaction-diffusion equations

被引:10
|
作者
Hao, Xinan [1 ]
Liu, Lishan [1 ,2 ]
Wu, Yonghong [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
Iterative solution; nonlinear advection-reaction-diffusion equations; impulse; TRAVELING-WAVE SOLUTIONS; STABILITY; EXISTENCE; SYSTEMS;
D O I
10.22436/jnsa.009.06.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Through solving equations step by step and by using the generalized Banach fixed point theorem, under simple conditions, the authors present the existence and uniqueness theorem of the iterative solution for nonlinear advection-reaction-diffusion equations with impulsive effects. An explicit iterative scheme for the solution is also derived. The results obtained generalize and improve some known results. (C) 2016 All rights reserved.
引用
收藏
页码:4070 / 4077
页数:8
相关论文
共 50 条
  • [1] Picard's iterative method for nonlinear advection-reaction-diffusion equations
    Ramos, J. I.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (04) : 1526 - 1536
  • [2] Error estimators for advection-reaction-diffusion equations based on the solution of local problems
    Araya, Rodolfo
    Behrens, Edwin
    Rodriguez, Rodolfo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 440 - 453
  • [3] NUMERICAL SOLUTION OF A CLASS OF ADVECTION-REACTION-DIFFUSION SYSTEM
    Cao, Li
    Ma, Zhanxin
    THERMAL SCIENCE, 2019, 23 (03): : 1503 - 1511
  • [4] A conservative method of lines for advection-reaction-diffusion equations
    Ramos, J., I
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (11) : 4735 - 4763
  • [5] NUMERICAL SOLUTION OF FRACTIONAL ORDER ADVECTION-REACTION-DIFFUSION EQUATION
    Das, Subir
    Singh, Anup
    Ong, Seng Huat
    THERMAL SCIENCE, 2018, 22 : S309 - S316
  • [6] Numerical solution of the advection-reaction-diffusion equation at different scales
    Rubio, A. D.
    Zalts, A.
    El Hasi, C. D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (01) : 90 - 95
  • [7] Novel numerical analysis for nonlinear advection-reaction-diffusion systems
    Shahid, Naveed
    Ahmed, Nauman
    Baleanu, Dumitru
    Alshomrani, Ali Saleh
    Iqbal, Muhammad Sajid
    Rehman, Muhammad Aziz-ur
    Shaikh, Tahira Sumbal
    Malik, Muhammad Rafiq
    OPEN PHYSICS, 2020, 18 (01): : 112 - 125
  • [8] Front tracking for quantifying advection-reaction-diffusion
    Nevins, Thomas D.
    Kelley, Douglas H.
    CHAOS, 2017, 27 (04)
  • [9] Optimal Stretching in Advection-Reaction-Diffusion Systems
    Nevins, Thomas D.
    Kelley, Douglas H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (16)
  • [10] Numerical Solution of Nonlinear Space-Time Fractional-Order Advection-Reaction-Diffusion Equation
    Dwivedi, Kushal Dhar
    Rajeev
    Das, Subir
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (06):