Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis

被引:194
作者
Mancabelli, Leonardo [1 ]
Milani, Christian [1 ]
Lugli, Gabriele Andrea [1 ]
Turroni, Francesca [1 ]
Cocconi, Deborah [1 ]
van Sinderen, Douwe [2 ]
Ventura, Marco [1 ]
机构
[1] Univ Parma, Dept Chem Life Sci & Environm Sustainabil, Lab Probiogen, Parma, Italy
[2] Univ Parma, Microbiome Res Hub, Parma, Italy
基金
爱尔兰科学基金会;
关键词
microbiota; gut diseases; microbiome; microbial biomarkers; metagenomics; CLOSTRIDIUM-DIFFICILE INFECTION; COLORECTAL-CANCER; CROHNS-DISEASE; STREPTOCOCCUS-BOVIS; FECAL MICROBIOTA; COMMUNITY; DIVERSITY; EPIDEMIOLOGY; DYSBIOSIS; BACTERIA;
D O I
10.1093/femsec/fix153
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Intestinal diseases, such as Crohn's disease (CD), ulcerative colitis (UC) and pseudomembranous colitis (CDI), are among the most common diseases in humans and may lead to more serious pathologies, e.g. colorectal cancer (CRC). Next generation sequencing has in recent years allowed the identification of correlations between intestinal bacteria and diseases, although the formulation of universal gut microbial biomarkers for such diseases is only in its infancy. In the current study, we selected and reanalyzed a total of 3048 public datasets obtained from 16S rRNA profiling of individuals affected by CD, UC, CDI and CRC. This meta-analysis revealed possible biases in the reconstruction of the gut microbiota composition due to the use of different primer pairs employed for PCR of 16S rRNA gene fragments. Notably, this approach also identified common features of individuals affected by gut diseases (DS), including lower biodiversity compared to control subjects. Moreover, potential universal intestinal disease microbial biomarkers were identified through cross-disease comparisons. In detail, CTRL showed high abundance of the genera Barnesiella, Ruminococcaceae UCG-005, Alistipes, Christensenellaceae R-7 group and unclassified member of Lachnospiraceae family, while DS exhibited high abundance of Lactobacillus, unclassified member of Erysipelotrichaceae family and Streptococcus genera.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Campylobacter concisus as the etiologic agent of gastrointestinal diseases [J].
Akutko, Katarzyna ;
Matusiewicz, Krzysztof .
ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 26 (01) :149-154
[2]   Epidemiology and risk factors for IBD [J].
Ananthakrishnan, Ashwin N. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2015, 12 (04) :205-217
[3]   Intestinal Dysbiosis and Depletion of Butyrogenic Bacteria in Clostridium difficile Infection and Nosocomial Diarrhea [J].
Antharam, Vijay C. ;
Li, Eric C. ;
Ishmael, Arif ;
Sharma, Anuj ;
Mai, Volker ;
Rand, Kenneth H. ;
Wang, Gary P. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (09) :2884-2892
[4]   Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity [J].
Ben-Dov, Eitan ;
Shapiro, Orr H. ;
Siboni, Nachshon ;
Kushmaro, Ariel .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (11) :6902-6906
[5]   Infectious Agents and Colorectal Cancer: A Review of Helicobacter pylori, Streptococcus bovis, JC Virus, and Human Papillomavirus [J].
Burnett-Hartman, Andrea N. ;
Newcomb, Polly A. ;
Potter, John D. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2008, 17 (11) :2970-2979
[6]   Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment [J].
Burns, Michael B. ;
Lynch, Joshua ;
Starr, Timothy K. ;
Knights, Dan ;
Blekhman, Ran .
GENOME MEDICINE, 2015, 7
[7]   Biased Diversity Metrics Revealed by Bacterial 16S Pyrotags Derived from Different Primer Sets [J].
Cai, Lin ;
Ye, Lin ;
Tong, Amy Hin Yan ;
Lok, Si ;
Zhang, Tong .
PLOS ONE, 2013, 8 (01)
[8]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522
[9]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[10]  
Carding Simon, 2015, Microbial Ecology in Health and Disease, V26, P26191, DOI 10.3402/mehd.v26.26191