Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

被引:17
|
作者
Burger, Raimund [1 ]
Ruiz, Ricardo [1 ]
Schneider, Kai [2 ]
Sepulveda, Mauricio [1 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille 13, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 04期
关键词
D O I
10.1051/m2an:2008016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist- Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order version is known to converge to an entropy solution of the problem. A particular feature of the method is the storage of the multiresolution representation of the solution in a graded tree, whose leaves are the non-uniform finite volumes on which the numerical divergence is eventually evaluated. Moreover using the L 1 contraction of the discrete time evolution operator we derive the optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate the computational efficiency together with the convergence properties.
引用
收藏
页码:535 / 563
页数:29
相关论文
共 50 条
  • [1] Multiresolution schemes for strongly degenerate parabolic equations in one space dimension
    Burger, Raimund
    Kozakevicius, Alice
    Sepulveda, Mauricio
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (03) : 706 - 730
  • [2] Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux
    Burger, Raimund
    Ruiz, Ricardo
    Schneider, Kai
    Sepulveda, Mauricio A.
    JOURNAL OF ENGINEERING MATHEMATICS, 2008, 60 (3-4) : 365 - 385
  • [3] Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux
    Raimund Bürger
    Ricardo Ruiz
    Kai Schneider
    Mauricio A. Sepúlveda
    Journal of Engineering Mathematics, 2008, 60 : 365 - 385
  • [4] A fully adaptive algorithm for parabolic partial differential equations in one space dimension
    Nowak, U
    Frauhammer, J
    Nieken, U
    COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 (05) : 547 - 561
  • [5] An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension
    Lappicy, Phillipo
    Beatriz, Ester
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 4125 - 4147
  • [6] Convergence for degenerate parabolic equations in one dimension
    Feireisl, E.
    Simondon, F.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 323 (03):
  • [7] Convergence for degenerate parabolic equations in one dimension
    Feireisl, E
    Simondon, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (03): : 251 - 255
  • [8] On parabolic equations in one space dimension
    Krylov, N. V.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (04) : 644 - 664
  • [9] Quasiconvergence in parabolic equations in one space dimension
    Li, Fang
    Lou, Bendong
    Lu, Junfan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 : 298 - 312
  • [10] Entropy solutions of a stationary problem associated to a nonlinear parabolic strongly degenerate problem in one space dimension
    Ouaro, Stanislas
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2006, 33 : 108 - 131