Stability of large excavations in laminated hard rock masses: the voussoir analogue revisited

被引:149
作者
Diederichs, MS [1 ]
Kaiser, PK [1 ]
机构
[1] Laurentian Univ, Geomech Res Ctr, Sudbury, ON P3E 2C6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0148-9062(98)00180-6
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The voussoir beam analogue has provided a useful stability assessment tool for more than 55 years and has seen numerous improvements and revisions over the years. In this paper, a simplified and robust iterative algorithm is presented for this model. This approach includes an improved assumption for internal compression arch geometry, simplified displacement determination. support pressure and surcharge analysis and a corrected stabilizing moment in the two dimensional case. A discrete element simulation is used to verify these enhancements and to confirm traditional assumptions inherent in the model. In the case of beam snap-through failure, dominant in hard rock excavations of moderately large span, design criteria are traditionally based on a stability limit which represents an upper bound for stable span estimates. A deflection threshold has been identified and verified through field evidence, which corresponds to the onset of non-linear deformation bt behaviour and therefore, of initial instability. This threshold is proposed as a more reasonable stability limit for this failure mode in rockmasses and particularly for data limited cases. Design charts, based on this linearity limit for unsupported stability of jointed rock beams, are presented hero summarizing critical span-thickness-modulus relationships. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 34 条
  • [1] [Anonymous], 5 ISRM S MELB
  • [2] [Anonymous], CIM B
  • [3] [Anonymous], T I MIN METAL
  • [4] [Anonymous], B SOC IND MINERAL
  • [5] STRENGTH, DEFORMATION AND CONDUCTIVITY COUPLING OF ROCK JOINTS
    BARTON, N
    BANDIS, S
    BAKHTAR, K
    [J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1985, 22 (03): : 121 - 140
  • [6] BARTON N, 1983, P INT S ENG GEOL UND, V2, P51
  • [7] Barton N., 1980, SUBSURFACE SPACE, V2, P553
  • [8] Barton N. R., 1974, Rock Mechanics and Rock Engineering, V6, P189
  • [9] BEER G, 1982, T I MIN METALL A, V91, pA18
  • [10] BETOURNAY MC, 1987, CIM BULL, V80, P45