Improving Entity Linking by Introducing Knowledge Graph Structure Information

被引:7
作者
Li, Qijia [1 ,2 ,3 ]
Li, Feng [1 ,2 ,4 ]
Li, Shuchao [1 ,2 ]
Li, Xiaoyu [1 ,2 ]
Liu, Kang [1 ,2 ]
Liu, Qing [1 ,2 ]
Dong, Pengcheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, QILU Res Inst, Jinan 250000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
关键词
entity linking; knowledge graph; entity embedding; global model;
D O I
10.3390/app12052702
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Entity linking involves mapping ambiguous mentions in documents to the correct entities in a given knowledge base. Most of the current methods are a combination of local and global models. The local model uses the local context information around the entity mention to independently resolve the ambiguity of each entity mention. The global model encourages thematic consistency across the target entities of all mentions in the document. However, the known global models calculate the correlation between entities from a semantic perspective, ignoring the correlation information between entities in nature. In this paper, we introduce knowledge graphs to enrich the correlation information between entities and propose an entity linking model that introduces the structural information of the knowledge graph (KGEL). The model can fully consider the relations between entities. To prove the importance of the knowledge graph structure, extensive experiments are conducted on multiple public datasets. Results illustrate that our model outperforms the baseline and achieves superior performance.
引用
收藏
页数:18
相关论文
共 51 条
  • [1] [Anonymous], 2013, P 2013 C EMP METH NA
  • [2] [Anonymous], 2013, Short Papers
  • [3] Bollacker K.D., 2008, P 2008 ACM SIGMOD IN, P1247, DOI [DOI 10.5555/1619797.1619981, DOI 10.1145/1376616.1376746]
  • [4] Bordes A., 2013, ADV NEURAL INF PROCE, P9
  • [5] A semantic matching energy function for learning with multi-relational data Application to word-sense disambiguation
    Bordes, Antoine
    Glorot, Xavier
    Weston, Jason
    Bengio, Yoshua
    [J]. MACHINE LEARNING, 2014, 94 (02) : 233 - 259
  • [6] Cao ZS, 2021, AAAI CONF ARTIF INTE, V35, P6894
  • [7] Cetoli A., 2018, ARXIV181009164
  • [8] Chao L., 2020, ARXIV201103798
  • [9] Chung J, 2014, ARXIV, DOI DOI 10.48550/ARXIV.1412.3555
  • [10] Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171