Layer-by-layer assembly synthesis of ZnO/SnO2 composite nanowire arrays as high-performance anode for lithium-ion batteries

被引:38
|
作者
Wang, Jiazheng
Du, Ning
Zhang, Hui
Yu, Jingxue
Yang, Deren [1 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国博士后科学基金;
关键词
Composites; Nanostructures; Chemical synthesis; Electrochemical properties; POLYCRYSTALLINE SNO2 NANOTUBES; HOLLOW SPHERES; HIGH-CAPACITY; ZINC-OXIDE; CO3O4; TEMPLATES; MECHANISM;
D O I
10.1016/j.materresbull.2011.08.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A layer-by-layer approach has been. developed to synthesize ZnO/SnO2 composite nanowire arrays on copper substrate. ZnO nanowire arrays have been first prepared on copper substrate through seed-assisted method, and then, the surface of ZnO nanowires have been modified by the polyelectrolyte. After oxidation-reduction reaction, SnO2 layer has been deposited onto the surface of ZnO nanowires. The assynthesized ZnO/SnO2 composite nanowire arrays have been applied as anode for lithium-ion batteries, which show high reversible capacity and good cycling stability compared to pure ZnO nanowire arrays and SnO2 nanoparticles. It is believed that the improved performance may be attributed to the high capacity of SnO2 and the good cycling stability of the array structure on current collector. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2378 / 2384
页数:7
相关论文
共 50 条
  • [1] CoNiO nanowire arrays as a high-performance anode material for lithium-ion batteries
    Yao, Jianyu
    Xiao, Peng
    Zhang, Yunhuai
    Zhan, Min
    Yang, Fei
    Meng, Xiaoqin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 583 : 366 - 371
  • [2] SnO2 nanotube arrays embedded in a carbon layer for high-performance lithium-ion battery applications
    Um, Ji Hyun
    Yu, Seung-Ho
    Cho, Yong-Hun
    Sung, Yung-Eun
    NEW JOURNAL OF CHEMISTRY, 2015, 39 (04) : 2541 - 2546
  • [3] Assembly of mesoporous SnO2 spheres and carbon nanotubes network as a high-performance anode for lithium-ion batteries
    Xuejun Liu
    Pengcheng Xu
    Xinru Li
    Yiting Peng
    Zaiyuan Le
    Journal of Materials Science, 2018, 53 : 15621 - 15630
  • [4] Assembly of mesoporous SnO2 spheres and carbon nanotubes network as a high-performance anode for lithium-ion batteries
    Liu, Xuejun
    Xu, Pengcheng
    Li, Xinru
    Peng, Yiting
    Le, Zaiyuan
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (22) : 15621 - 15630
  • [5] Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries
    Tan, Qingke
    Kong, Zhen
    Chen, Xiaojing
    Zhang, Lei
    Hu, Xiaoqi
    Mu, Mengxin
    Sun, Haochen
    Shao, Xinchun
    Guan, Xianggang
    Gao, Min
    Xu, Binghui
    APPLIED SURFACE SCIENCE, 2019, 485 : 314 - 322
  • [6] High-performance flexible SnO2 anode boosted by an N-doped graphite coating layer for lithium-ion and sodium-ion batteries
    Teng, Wanming
    Lu, Zhenbao
    Li, Xuelei
    Wang, Xiaohu
    Liu, Jun
    Dong, Junhui
    Nan, Ding
    ELECTROCHEMISTRY COMMUNICATIONS, 2022, 141
  • [7] Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries
    Wang, Fei
    Jiao, Hongxing
    He, Erkang
    Yang, Shaoan
    Chen, Yongmei
    Zhao, Mingshu
    Song, Xiaoping
    JOURNAL OF POWER SOURCES, 2016, 326 : 78 - 83
  • [9] Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries
    Wang, Junjie
    Wang, Luyang
    Zhang, Siyu
    Liang, Shuiying
    Liang, Xianqing
    Huang, Haifu
    Zhou, Wenzheng
    Guo, Jin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 748 : 1013 - 1021
  • [10] In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries
    Hongdong Liu
    Jiamu Huang
    Chengjie Xiang
    Jia Liu
    Xinlu Li
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 3640 - 3645