Growth and electrical characterisation of 6-doped boron layers on (111) diamond surfaces

被引:37
作者
Edgington, Robert [1 ,2 ]
Sato, Syunsuke [3 ]
Ishiyama, Yuichiro [3 ]
Morris, Richard [4 ]
Jackman, Richard B. [1 ,2 ]
Kawarada, Hiroshi [3 ]
机构
[1] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[2] UCL, Dept Elect & Elect Engn, London WC1H 0AH, England
[3] Waseda Univ, Dept Elect & Photon Syst, Shinjuku Ku, Tokyo 1698555, Japan
[4] Univ Warwick, Dept Phys, Adv SIMS Projects, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
DELTA-DOPED DIAMOND; ELECTRONIC-PROPERTIES; TERMINATED DIAMOND; FABRICATION; DEPENDENCE;
D O I
10.1063/1.3682760
中图分类号
O59 [应用物理学];
学科分类号
摘要
A plasma enhanced chemical vapor deposition protocol for the growth of (delta-doping of boron in diamond is presented, using the (111) diamond plane as a substrate for diamond growth. AC Hall effect measurements have been performed on oxygen terminated delta-layers and desirable sheet carrier densities (similar to 10(13) cm(-2)) for field-effect transistor application are reported with mobilities in excess of what would expected for equivalent but thicker heavily boron-doped diamond films. Temperature-dependent impedance spectroscopy and secondary ion mass spectroscopy measurements show that the grown layers have metallic-like electrical properties with high cut-off frequencies and low thermal impedance activation energies with estimated boron concentrations of approximately 10(20) cm(-3). (C) 2012 American Institute of Physics. [doi:10.1063/1.3682760]
引用
收藏
页数:7
相关论文
共 35 条
[1]   Low-temperature transport in highly boron-doped nanocrystalline diamond [J].
Achatz, P. ;
Gajewski, W. ;
Bustarret, E. ;
Marcenat, C. ;
Piquerel, R. ;
Chapelier, C. ;
Dubouchet, T. ;
Williams, O. A. ;
Haenen, K. ;
Garrido, J. A. ;
Stutzmann, M. .
PHYSICAL REVIEW B, 2009, 79 (20)
[2]   Diamond junction FETs based on δ-doped channels [J].
Aleksov, A ;
Vescan, A ;
Kunze, M ;
Gluche, P ;
Ebert, W ;
Kohn, E ;
Bergmaier, A ;
Dollinger, G .
DIAMOND AND RELATED MATERIALS, 1999, 8 (2-5) :941-945
[3]   Cleaning thin-film diamond surfaces for device fabrication: An Auger electron spectroscopic study [J].
Baral, B ;
Chan, SSM ;
Jackman, RB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (04) :2303-2307
[4]   Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications [J].
Borst, TH ;
Weis, O .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1996, 154 (01) :423-444
[5]   Metal-to-insulator transition and superconductivity in boron-doped diamond [J].
Bustarret, E. ;
Achatz, P. ;
Sacepe, B. ;
Chapelier, C. ;
Marcenat, C. ;
Ortega, L. ;
Klein, T. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1863) :267-279
[6]   Optical and electronic properties of heavily boron-doped homo-epitaxial diamond [J].
Bustarret, E ;
Gheeraert, E ;
Watanabe, K .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 199 (01) :9-18
[7]   DIAMOND CHEMICAL VAPOR-DEPOSITION [J].
CELII, FG ;
BUTLER, JE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1991, 42 (01) :643-684
[8]   pH sensor on O-terminated diamond using boron-doped channel [J].
Denisenko, A. ;
Jamornmarn, G. ;
El-Hajj, H. ;
Kohn, E. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (4-7) :905-910
[9]   Diamond power devices. Concepts and limits [J].
Denisenko, A ;
Kohn, E .
DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) :491-498
[10]   The electronic surface barrier of boron-doped diamond by anodic oxidation [J].
Denisenko, A. ;
Pietzka, C. ;
Romanyuk, A. ;
El-Hajj, H. ;
Kohn, E. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (01)